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STRUCTURAL STABILITY RESULTS FOR THE

THERMOELASTICITY OF TYPE III

Yan Liu

Abstract. The equations arising from the thermoelastic theory are an-
alyzed in a linear approximation. First, we establish the convergence
result on the coefficient c. Next, we establish that the solution depends
continuously on changes in the coefficient c. The main tool used in this
paper is the energy method.

1. Introduction

We consider the structural stability of a problem arising from the ther-
moelastic theory which is discussed in the work of Green and Naghdi [6, 7]
and Quintanilla [18]. For other thermoelastic equations, one could refer to
[4, 16, 17, 19]. The governing equations of linear theory of thermoelasticity of
type III are

(1.1) ρüi = µ△ui + (λ+ µ)uj,ji − βθ,i,

(1.2) cα̈ = −βu̇i,i + k△α+ b△θ.

Here ui is the displacement, the constant ρ is the density of the considered
medium, θ is the temperature, α is a variable which is typical of this theory and
satisfies α̇ = θ, λ and µ are the Lamé constants and we assume that they satisfy
µ > 0 and µ+λ > 0, β is the coupling parameter and is related to the thermal
expansion coefficient, b > 0 is the thermal conductivity, c > 0 is the specific heat
and k > 0 is a parameter which is typical on the theories of type II and III. On a
macroscopic scale the scalar α is regarded as representing some “mean” thermal
displacement magnitude, and for brevity is referred to as thermal displacement.
Its presence in some sense introduces a “thermal memory” and enhances heat
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propagation as a thermal displacement wave. (Both types II and III theories
for heat flow in a stationary rigid solid accommodate finite wave speed.)

Studies of the concept of structural stability have been gaining much impe-
tus; see e.g., accounts in the books of Ames and Straughan [1] and the mono-
graph of Straughan [21, 22], see also the papers [2, 3, 5, 10, 11, 12, 13, 14, 15, 20]
and the papers cited therein. Structural stability which stresses the continu-
ous dependence or convergence on changes on differential equations may be
reflected physically by changes in constitutive parameters. We believe that the
mathematical analysis of these equations will help to reveal the applicability of
them in physics. On the other hand, continuous dependence (or convergence)
results are important because of the inevitable error that arises in both numer-
ical computation and the physical measurement of data. It is relevant to know
the magnitude of the effect of such errors on the solutions.

In [18], Quintanilla studied the equations (1.1) and (1.2), he obtained some
results on the convergence and structural stability. But he didn’t touch with the
structural stability on the coefficients ρ and c. Later, in [9], the authors studies
the result of continuous dependence on the coefficient ρ. In the present paper,
we also investigate the structural stability of the equations (1.1) and (1.2),
unlike the above two papers, we obtain both the convergence and continuous
dependence results on the coefficient c which can’t follow from the methods of
[9] and [18].

In this article we study how a solution to (1.1) and (1.2) on an arbitrary
bounded spatial domain Ω behaves under changes in the parameter c. This is
a singular problem, and so the convergence result is of interest. Often when
a parameter tends to zero in a physical problem, this can lead to dramatic
consequences including finite time blow up; see, e.g., the accounts in the book
by Straughan [23]. Hence, we deem that the derivation of accurate a priori
bounds that estimate the convergence rate in a suitable terms of c is of practical
value. What’s more, in deriving our convergence result as c → 0, we change
the type of equation (1.2) from a hyperbolic equation to a parabolic equation,
while the previous papers don’t change the style. So the argument to derive
the result in this paper is more involved, the result established in this paper is
more interesting.

In the present paper, the comma is used to indicate partial differentiation,
the differentiation with respect to the direction xk is denoted as, k, thus u,i
denotes ∂u

∂xi

, and u̇ denotes ∂u
∂t
. The usual summation convection is employed

with repeated Latin subscripts i summed from 1 to 3. Hence, ui,i =
∑3

i=1
∂ui

∂xi

.

2. Convergence result as c → 0

Let Ω be a bounded domain in R
3, with boundary ∂Ω smooth enough to

allow applications of the divergence theorem. Let (ui, α) and (vi, z) be the
solutions of the following equations as c→ 0.

(2.1) ρüi = µ∆ui + (λ+ µ)uj,ji − βα̇,i in Ω× (0, t),
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(2.2) cα̈ = −βu̇i,i + k∆α+ b∆α̇ in Ω× (0, t),

(2.3) ui = ũi(x), α = α̃(x) on ∂Ω,

(2.4) α(x, 0) = α0(x), ui(x, 0) = u0i (x), u̇i(x, 0) = ν0i (x), α̇(x, 0) = θ0(x),

and

(2.5) ρv̈i = µ∆vi + (λ+ µ)vj,ji − βż,i in Ω× (0, t),

(2.6) 0 = −βv̇i,i + k∆z + b∆ż in Ω× (0, t),

(2.7) ui = ũi(x), z = α̃(x) on ∂Ω,

(2.8) z(x, 0) = α0(x), vi(x, 0) = u0i (x), v̇i(x, 0) = ν0i (x).

We now define wi, π as

(2.9) wi = ui − vi, π = α− z,

then (wi, π) solves the following boundary initial problems:

(2.10) ρẅi = µ∆wi + (λ+ µ)wj,ji − βπ̇,i in Ω× (0, t),

(2.11) cα̈ = −βẇi,i + k∆π + b∆π̇ in Ω× (0, t),

(2.12) wi = π = 0 on ∂Ω,

(2.13) wi(x, 0) = ẇi(x, 0) = π(x, 0) = 0, π̇(x, 0) = θ0(x)− żi(x, 0) in Ω.

Let us rearrange (2.11) and then form
∫ t

0

∫

Ω

π̇(cπ̈ + cz̈ + βẇi,i − k∆π − b∆π̇)dxdη = 0.

After some integrations, we obtain from the identity

c

2

∫

Ω

(π̇)2dx+ β

∫ t

0

∫

Ω

π̇ẇi,idxdη +
k

2

∫

Ω

π,iπ,idx+ b

∫ t

0

∫

Ω

π̇,iπ̇,idxdη(2.14)

=
c

2

∫

Ω(0)

(θ0 − ż)2dx+
c

2

∫

Ω

(ż)2dx−
c

2

∫

Ω(0)

(ż)2dx− c

∫ t

0

∫

Ω

α̇z̈dxdη,

where Ω0 denotes Ω× {t = 0}.
Multiplying (2.10) by ẇi and integrating over Ω× (0, t), we obtain

(2.15)
ρ

2

∫

Ω

ẇiẇidx+
µ

2

∫

Ω

wi,jwi,jdx+
λ+ µ

2

∫

Ω

(wj,j)
2 + β

∫ t

0

∫

Ω

ẇiπ̇,idxdη = 0.

Combining (2.14) and (2.15), we get

c

2

∫

Ω

(π̇)2dx +
k

2

∫

Ω

π,iπ,idx+ b

∫ t

0

∫

Ω

π̇,iπ̇,idxdη(2.16)

+
ρ

2

∫

Ω

ẇiẇidx+
µ

2

∫

Ω

wi,jwi,jdx+
λ+ µ

2

∫

Ω

(wj,j)
2
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=
c

2

∫

Ω(0)

(θ0 − ż)2dx+
c

2

∫

Ω

(ż)2dx−
c

2

∫

Ω(0)

(ż)2dx− c

∫ t

0

∫

Ω

α̇z̈dxdη.

Using the Cauchy-Schwarz inequality, we have

c

2

∫

Ω

(π̇)2dx+
k

2

∫

Ω

π,iπ,idx + b

∫ t

0

∫

Ω

π̇,iπ̇,idxdη(2.17)

+
ρ

2

∫

Ω

ẇiẇidx+
µ

2

∫

Ω

wi,jwi,jdx+
λ+ µ

2

∫

Ω

(wj,j)
2

≤ c

∫

Ω(0)

(θ0)2dx+
c

2

∫

Ω

(ż)2dx+ c

∫

Ω(0)

(ż)2dx

+ c

√

∫ t

0

∫

Ω

(α̇)2dxdη

√

∫ t

0

∫

Ω

(z̈)2dxdη.

To proceed, we multiply (2.2) by α̇ and integrate over Ω× (0, t) to find

c

2

∫

Ω

(α̇)2dx+ β

∫ t

0

∫

Ω

u̇i,iα̇dxdη +
k

2

∫

Ω

α,jα,jdx + b

∫ t

0

∫

Ω

α̇,jα̇,jdxdη

(2.18)

=
c

2

∫

Ω(0)

(θ0)2dx+
k

2

∫

Ω(0)

α0
,jα

0
,jdx.

Multiplying (2.1) by u̇i and integrating over Ω× (0, t), we obtain

ρ

2

∫

Ω

u̇iu̇idx+
µ

2

∫

Ω

ui,jui,jdx+
λ+ µ

2

∫

Ω

(uj,j)
2dx+ β

∫ t

0

∫

Ω

α̇,iu̇idxdη

(2.19)

=
ρ

2

∫

Ω(0)

ν0i ν
0
i dx+

µ

2

∫

Ω(0)

u0i,ju
0
i,jdx+

λ+ µ

2

∫

Ω(0)

(u0j,j)
2dx.

We combine (2.18) and (2.19) to obtain

c

2

∫

Ω

(α̇)2dx+
k

2

∫

Ω

α,jα,jdx+ b

∫ t

0

∫

Ω

α̇,jα̇,jdxdη +
ρ

2

∫

Ω

u̇iu̇idx

+
µ

2

∫

Ω

ui,jui,jdx+
λ+ µ

2

∫

Ω

(uj,j)
2dx

=
c

2

∫

Ω(0)

(θ0)2dx+
k

2

∫

Ω(0)

α0
,jα

0
,jdx+

ρ

2

∫

Ω(0)

ν0i ν
0
i dx+

µ

2

∫

Ω(0)

u0i,ju
0
i,jdx

+
λ+ µ

2

∫

Ω(0)

(u0j,j)
2dx

= k1(x).

Using the Poincare inequality, we have
∫ t

0

∫

Ω

(α̇)2dxdη ≤
1

λ∗

∫ t

0

∫

Ω

α̇,jα̇,jdxdη,
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where λ∗ is the smallest eigenvalue in the problem

△ψ + λψ = 0, in Ω,

ψ = 0, on ∂Ω,

lower bounds for λ∗ are well known, see e.g., [8].
We can easily obtain

(2.20)

∫ t

0

∫

Ω

(α̇)2dxdη ≤
k1(x)

bλ∗
.

Then differentiate (2.6) with respect to t, multiply the result by z̈ and integrate
over Ω× (0, t) to see that
(2.21)

β

∫ t

0

∫

Ω

v̈i,iz̈dxdη +
k

2

∫

Ω

ż,j ż,jdx + b

∫ t

0

∫

Ω

z̈,j z̈,jdxdη =
k

2

∫

Ω(0)

ż,j ż,jdx.

We also differentiate (2.5) with respect to t, multiply the result by v̈i and
integrate over Ω× (0, t) to see that

ρ

2

∫

Ω

v̈iv̈idx +
µ

2

∫

Ω

v̇i,j v̇i,jdx+
λ+ µ

2

∫

Ω

v̇i,iv̇j,jdx+ β

∫ t

0

∫

Ω

v̈iz̈,idxdη

(2.22)

=
ρ

2

∫

Ω(0)

v̈iv̈idx +
µ

2

∫

Ω(0)

ν0i,jν
0
i,jdx+

λ+ µ

2

∫

Ω(0)

v̇i,iv̇j,jdx.

(2.23)

We assume that the system of equations is satisfied at t = 0, thus, we obtain

X0
i = v̈i|t=0 = ρ−1(µ△u0i + (λ+ µ)u0j,j − βθ0,j).(2.24)

Thus, combining (2.21), (2.22) and (2.23), we obtain

k

2

∫

Ω

ż,j ż,jdx+ b

∫ t

0

∫

Ω

z̈,j z̈,jdxdη +
ρ

2

∫

Ω

v̈iv̈idx+
µ

2

∫

Ω

v̇i,j v̇i,jdx(2.25)

=
k

2

∫

Ω(0)

ż,j ż,jdx+
ρ

2

∫

Ω(0)

X0
iX

0
i dx+

µ

2

∫

Ω(0)

ν0i,jν
0
i,jdx.

To handle the term on the right side, we have
∫

Ω(0)

ż,j ż,jdx = −

∫

Ω(0)

ż,jj żdx

=
1

b

∫

Ω(0)

(−βv̇i,i + kz,jj)żdx

=
β

b

∫

Ω(0)

v̇iż,idx−
k

b

∫

Ω(0)

z,j ż,jdx

=
β

b

∫

Ω(0)

ν0i ż,idx −
k

b

∫

Ω(0)

α0
,j ż,jdx.
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Using the Schwarz inequality, we get

(2.26)

∫

Ω(0)

ż,j ż,jdx ≤ k2

∫

Ω(0)

ν0i ν
0
i dx+ k3

∫

Ω(0)

α0
,jα

0
,jdx,

where k2 = 2β2

b2
, k3 = 2k2

b2
.

Combining (2.24) and (2.25), we obtain

k

2

∫

Ω

ż,j ż,jdx+ b

∫ t

0

∫

Ω

z̈,j z̈,jdxdη +
ρ

2

∫

Ω

v̈iv̈idx+
µ

2

∫

Ω

v̇i,j v̇i,jdx

(2.27)

≤
kk2

2

∫

Ω(0)

ν0i ν
0
i dx+

kk3

2

∫

Ω(0)

α0
,jα

0
,jdx+

ρ

2

∫

Ω(0)

X0
iX

0
i dx+

µ

2

∫

Ω(0)

ν0i,jν
0
i,jdx

= k4(x).

Using the Poincare inequality, we obtain

(2.28)

∫

Ω(0)

(ż)2dx ≤
1

λ∗

∫

Ω(0)

ż,j ż,jdx,

(2.29)

∫

Ω

(ż)2dx ≤
1

λ∗

∫

Ω

ż,j ż,jdx,

and

(2.30)
1

λ∗

∫

Ω

z̈,j z̈,jdx ≥

∫

Ω

(z̈)2dx,

where λ∗ is the smallest eigenvalue in the membrane problem for Ω.
From (2.25) and (2.27), we obtain

(2.31)

∫

Ω(0)

(ż)2dx ≤
k2

λ∗

∫

Ω(0)

ν0i ν
0
i dx+

k3

λ∗

∫

Ω(0)

α0
,jα

0
,jdx.

Combining (2.26), (2.28) and (2.29), we get

(2.32)

∫ t

0

∫

Ω

(z̈)2dxdη ≤
1

λ∗b
k4(x)

and

(2.33)

∫

Ω

(ż)2dx ≤
2

λ∗k
k4(x).

On combining (2.17), (2.20), (2.30), (2.31) and (2.32), we get

c

2

∫

Ω

(π̇)2dx+
k

2

∫

Ω

π,iπ,idx + b

∫ t

0

∫

Ω

π̇,iπ̇,idxdη(2.34)

+
ρ

2

∫

Ω

ẇiẇidx+
µ

2

∫

Ω

wi,jwi,jdx+
λ+ µ

2

∫

Ω

(wj,j)
2

≤ c

∫

Ω(0)

(θ0)2dx+
ck2

2λ∗

∫

Ω(0)

ν0i ν
0
i dx+

ck3

2λ∗

∫

Ω(0)

α0
,jα

0
,jdx
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+
c

λ∗k
k4(x) + c

√

k1(x)t

βλ∗

√

k4(x)

λ∗b
.

Inequality (2.33) is an a priori bound that demonstrates convergence in the
measure indicated. The rate of convergence is O(c).

Summarizing all the above discussions, we can establish the following theo-
rem:

Theorem 1. Let (ui, α) and (vi, z) be the classical solutions of the thermoe-

lasticity of type III for different values of c > 0 and c = 0, respectively, (wi, π)
be the difference of (ui, α) and (vi, z), the estimate (2.33) is satisfied.

3. Continuous dependence on the coefficient c

Let (ui, α) and (vi, z) be the solutions of the following equations for different
values c1 and c2, respectively

(3.1) ρüi = µ∆ui + (λ+ µ)uj,ji − βα̇,i in Ω× (0, t),

(3.2) c1α̈ = −βu̇i,i + k∆α+ b∆α̇ in Ω× (0, t),

(3.3) ui = ũi(x), z = α̃(x) on ∂Ω,

(3.4) α(x, 0) = α0(x), ui(x, 0) = u0i (x), u̇i(x, 0) = ν0i (x), α̇(x, 0) = θ0(x),

and

(3.5) ρv̈i = µ∆vi + (λ+ µ)vj,ji − βż,i in Ω× (0, t),

(3.6) c2z̈ = −βv̇i,i + k∆z + b∆ż in Ω× (0, t),

(3.7) vi = ũi(x), α = α̃(x) on ∂Ω,

(3.8) z(x, 0) = α0(x), vi(x, 0) = u0i (x), v̇i(x, 0) = ν0i (x), ż(x, 0) = θ0(x).

We now define wi, π, c as

(3.9) wi = ui − vi, π = α− z, c = c1 − c2

then (wi, π) solves the boundary initial problems:

(3.10) ρẅi = µ∆wi + (λ+ µ)wj,ji − βπ̇,i in Ω× (0, t),

(3.11) cα̈+ c2π̈ = −βẇi,i + k∆π + b∆π̇ in Ω× (0, t),

(3.12) wi = π = 0 on ∂Ω,

(3.13) wi(x, 0) = ẇi(x, 0) = π(x, 0) = π̇(x, 0) = 0 in Ω.

We want to use a time-integrated norm to obtain our results. To do this,
we begin with the identity

(3.14)

∫ t

0

∫

Ω

(t− η)ẇi(ρẅi − µ∆wi − (λ + µ)wj,ji + βπ̇,i)dxdη = 0.



1276 YAN LIU

Upon integration in xi and t, we may deduce from this that

ρ

2

∫ t

0

∫

Ω

ẇiẇidxdη +
µ

2

∫ t

0

∫

Ω

wi,jwi,jdxdη +
λ+ µ

2

∫ t

0

∫

Ω

(wj,j)
2dxdη

(3.15)

= − β

∫ t

0

∫

Ω

(t− η)ẇiπ̇,idxdη.

From (3.11), we also have the identity

(3.16)

∫ t

0

∫

Ω

(t− η)π̇(cα̈+ c2π̈ + βẇi,i − k∆π − b∆π̇)dxdη = 0.

We can also obtain by integration by parts

c2

2

∫ t

0

∫

Ω

π̇2dxdη +
k

2

∫ t

0

∫

Ω

π,jπ,jdxdη + b

∫ t

0

∫

Ω

(t− η)π̇,j π̇,jdxdη(3.17)

= − c

∫ t

0

∫

Ω

(t− η)π̇α̈dxdη − β

∫ t

0

∫

Ω

(t− η)ẇi,iπ̇dxdη.

On combining (3.15) and (3.17), we obtain

ρ

2

∫ t

0

∫

Ω

ẇiẇidxdη +
µ

2

∫ t

0

∫

Ω

wi,jwi,jdxdη +
λ+ µ

2

∫ t

0

∫

Ω

(wj,j)
2dxdη

(3.18)

+
c2

2

∫ t

0

∫

Ω

π̇2dxdη +
k

2

∫ t

0

∫

Ω

π,jπ,jdxdη + b

∫ t

0

∫

Ω

(t− η)π̇,j π̇,jdxdη

= − c

∫ t

0

∫

Ω

(t− η)π̇α̈dxdη.

We use the arithmetic-geometric mean inequality on (3.18) to deduce that

ρ

2

∫ t

0

∫

Ω

ẇiẇidxdη +
µ

2

∫ t

0

∫

Ω

wi,jwi,jdxdη +
λ+ µ

2

∫ t

0

∫

Ω

(wj,j)
2dxdη

(3.19)

+
c2

4

∫ t

0

∫

Ω

π̇2dxdη +
k

2

∫ t

0

∫

Ω

π,jπ,jdxdη + b

∫ t

0

∫

Ω

(t− η)π̇,j π̇,jdxdη

=
c2t

c2

∫ t

0

∫

Ω

(t− η)(α̈)2dxdη.

To estimate the right side of (3.19), we differentiate (3.2) to obtain

(3.20) c1α̈,t = −βüi,i + k∆α̇+ b∆α̈.

Now, multiplying this equation by (t− η)α̈, and integrate over Ω× (0, t) to
see that

c1

2

∫ t

0

∫

Ω

(α̈)2dxdη + β

∫ t

0

∫

Ω

(t− η)α̈üi,idxdη +
k

2

∫ t

0

∫

Ω

α̇,jα̇,jdxdη(3.21)
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+ b

∫ t

0

∫

Ω

(t− η)α̈,jα̈,jdxdη

=
c1t

2

∫

Ω(0)

α̈2dx+
kt

2

∫

Ω(0)

θ0,jθ
0
,jdx.

Following the same procedure, from (3.1), we can also get

ρ

2

∫ t

0

∫

Ω

üiüidxdη +
µ

2

∫ t

0

∫

Ω

u̇i,j u̇i,jdxdη +
λ+ µ

2

∫ t

0

∫

Ω

(u̇j,j)
2dxdη(3.22)

+ β

∫ t

0

∫

Ω

(t− η)α̈,iüidxdη

=
ρt

2

∫

Ω(0)

üiüidx+
µt

2

∫

Ω(0)

ν0i,jν
0
i,jdx+

(λ+ µ)t

2

∫

Ω(0)

(ν0j,j)
2dx.

On combining (3.21) and (3.22), we obtain

c1

2

∫ t

0

∫

Ω

(α̈)2dxdη +
k

2

∫ t

0

∫

Ω

α̇,jα̇,jdxdη + b

∫ t

0

∫

Ω

(t− η)α̈,jα̈,jdxdη

(3.23)

+
ρ

2

∫ t

0

∫

Ω

üiüidxdη +
µ

2

∫ t

0

∫

Ω

u̇i,j u̇i,jdxdη +
λ+ µ

2

∫ t

0

∫

Ω

(u̇j,j)
2dxdη

=
c1t

2

∫

Ω(0)

α̈2dx+
kt

2

∫

Ω(0)

θ0,jθ
0
,jdx+

ρt

2

∫

Ω(0)

üiüidx+
µt

2

∫

Ω(0)

ν0i,jν
0
i,jdx

+
(λ + µ)t

2

∫

Ω(0)

(ν0j,j)
2dx.

If we assume that the system of equations are satisfied at t = 0, thus, we
obtain

(3.24) X0
i = üi|t=0 = ρ−1(µ△u0i + (λ+ µ)u0j,j − βθ0,j),

(3.25) Y 0
i = α̈|t=0 = c−1

1 (−βν0i,i + kα0
,jj + bθ0,jj).

On combining (3.19), (3.23), (3.24) and (3.25), we obtain

ρ

2

∫ t

0

∫

Ω

ẇiẇidxdη +
µ

2

∫ t

0

∫

Ω

wi,jwi,jdxdη +
λ+ µ

2

∫ t

0

∫

Ω

(wj,j)
2dxdη

(3.26)

+
c2

4

∫ t

0

∫

Ω

π̇π̇dxdη +
k

2

∫ t

0

∫

Ω

π,jπ,jdxdη + b

∫ t

0

∫

Ω

(t− η)π̇,j π̇,jdxdη

≤
2c2t2

c2c1

[c1t

2

∫

Ω(0)

Y 0
i Y

0
i dx+

kt

2

∫

Ω(0)

θ0,jθ
0
,jdx+

ρt

2

∫

Ω(0)

X0
iX

0
i dx

+
µt

2

∫

Ω(0)

ν0i,jν
0
i,jdx+

(λ+ µ)t

2

∫

Ω(0)

(ν0j,j)
2dx

]

.
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Estimate (3.26) establishes continuous dependence on c provided c1 and c2
are not small. The rate of the continuous is O(c2). The case of small c1 is
discussed in Section 2.

Following the discussions above, we can establish the following theorem:

Theorem 2. Let (ui, α) and (vi, z) be the classical solutions of the thermoe-

lasticity of type III for different values of c1 and c2 respectively, (wi, π) be the

difference of (ui, α) and (vi, z), and c = c1 − c2, then the estimate (3.26) is

satisfied.
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