• Title/Summary/Keyword: Structural safety performance

Search Result 1,047, Processing Time 0.031 seconds

Seismic performance evaluation of mid-rise shear walls: experiments and analysis

  • Parulekar, Y.M.;Reddy, G.R.;Singh, R.K.;Gopalkrishnan, N.;Ramarao, G.V.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.291-312
    • /
    • 2016
  • Seismic performance evaluation of shear wall is essential as it is the major lateral load resisting member of a structure. The ultimate load and ultimate drift of the shear wall are the two most important parameters which need to be assessed experimentally and verified analytically. This paper comprises the results of monotonic tests, quasi-static cyclic tests and shake-table tests carried out on a midrise shear wall. The shear wall considered for the study is 1:5 scaled model of the shear wall of the internal structure of a reactor building. The analytical simulation of these tests is carried out using micro and macro modeling of the shear wall. This paper mainly consists of modification in the hysteretic macro model, developed for RC structural walls by Lestuzzi and Badoux in 2003. This modification is made by considering the stiffness degradation effect observed from the tests carried out and this modified model is then used for nonlinear dynamic analysis of the shear wall. The outcome of the paper gives the variation of the capacity, the failure patterns and the performance levels of the shear walls in all three types of tests. The change in the stiffness and the damping of the wall due to increased damage and cracking when subjected to seismic excitation is also highlighted in the paper.

Effect of seismic design level on safety against progressive collapse of concentrically braced frames

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.135-156
    • /
    • 2014
  • In this research the effect of seismic design level as a practical approach for progressive collapse mitigation and reaching desired structural safety against it in seismically designed concentric braced frame buildings was investigated. It was achieved by performing preliminary and advanced progressive collapse analysis of several split-X braced frame buildings, designed for each seismic zone according to UBC 97 and by applying various Seismic Load Factors (SLFs). The outer frames of such structures were studied for collapse progression while losing one column and connected brace in the first story. Preliminary analysis results showed the necessity of performing advanced element loss analysis, consisting of Vertical Incremental Dynamic Analysis (VIDA) and Performance-Based Analysis (PBA), in order to compute the progressive collapse safety of the structures while increasing SLF for each seismic zone. In addition, by sensitivity analysis it became possible to introduce the equation of structural safety against progressive collapse for concentrically braced frames as a function of SLF for each seismic zone. Finally, the equation of progressive collapse safety as a function of bracing member capacity was presented.

Performance Evaluation of Composite Safety Barrier for Bridge by Vehicle Impact Simulation (차량 충격 시뮬레이션을 통한 복합소재 교량용 방호울타리의 성능 분석)

  • Kim, Seung-Eock;Jeon, Shin-Youl;Hong, Kab-Eui;Lee, Min-Chul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.499-506
    • /
    • 2011
  • In this study, the performance of composite safety barriers was evaluated through computer simulation. A composite safety barrier of SB4 grade was modeled. The MAT58 material model provided by LS-DYNA software was used to model composite material. The performance of composite material varies according to fiber, resin type, and fiber direction. Polyurethane resin and glass fiber were used. The performance of three different stacking designs was evaluated by carrying out vehicle impact simulation. The performance evaluation based on the vehicle crash manual includes the structural strength performance, the passenger protection performance, the vehicle behavior after crash, scattering of the guardrail. As the result of the finite element analysis, the barrier composed of the more transverse direction fibers shows the better performance on the impact simulation.

Influence in the Management Performance by the Airport Safety Management System (공항 안전관리시스템이 경영성과에 미치는 영향)

  • Song, Jong-Sun;Kim, Ki-Woong;Lee, Yung-kil
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.64-80
    • /
    • 2015
  • In this article, we verify to influence in the management performance by the safety management system that is recommended by the ICAO for the safety management on the airside area in the airport. Also, We present a comprehensive mediator effect that the employees perceive safety culture and safety behavior. We design how participants were selected as study the employees from 4 airports on the airside areas of the Incheon International Airport, Gimpo International Airport, Jeju International Airport and Gimhae International Airport in the Korea using the simple random sampling method. The instrument for data collection was a questionnaire, and it was developed. Data analysis was to conduct structural equation modeling. Test of the hypotheses were verified to Maximum Likelihood Estimator. As a result of the analysis, safety behavior and risk management of the safety management system found out that affect management performance. Also, the employees of a high awareness about safety policy could be seen that is a high impact on management performance through a safety culture and a safety behavior. Safety behavior has significant mediator effect within the relationship between the safety management system and management performance. So, We provide guidance of the safety policies for the safety management on the airside area in the airport.

A Study on Structural Relationship among Industrial Environment, Technological Cooperation and Performance of Small and Medium-sized Firms (중소기업의 산업환경, 기술협력 및 성과간의 구조적 관계에 관한 연구)

  • Na, Sang-Gyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.223-233
    • /
    • 2009
  • This study was aimed at analyzing the structural relationship among such factors as industrial environment, technological cooperation, technological innovation performance and management performance that are essential to technological innovation of small and medium-sized companies. For this aim, an analysis was conducted to determine which of the factors in industrial environment has impact on technological cooperation of small and medium-sized companies. An empirical analysis was also performance to find what kind of effects the technological cooperation may have on technological innovation and management performance. From the analyses, it became known that: first, changes in industrial environment have influence on technical cooperation factors including production technology, technical information, technical manpower and fund for technology that are assorted by means of factorial analysis; second, the technological cooperation of small and medium-sized companies has impact on their technological innovation performance; and third, the technological cooperation of small and medium-sized companies has impact on management performance.

Investigation of the Performance Based Structural Safety Factor of Elbows in Nuclear Power Plants (원전 엘보우의 성능기반 안전여유도 분석)

  • Lee, Sung-Ho;Park, Chi-Yong;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.826-831
    • /
    • 2009
  • The piping systems in nuclear power plant are composed of various typed pipes such as straight, elbow pipe, branch and reducer etc. The elbow is connected from straight pipe to another pipes in order to establish the complicated piping system. Elbow is one of very important components considering management of wall thinning degradation. It is however applied by various loads such as system pressure, earthquake, postulated break loading and many transient loads, which provoke simply the internal pressure, bending and torsional stress. In this study, firstly pipes in the secondary system of the nuclear power plant are classified as pipe size and type for selecting the investigating range. Next, a large number of finite element analysis considering the all typed dimensions of commercial pipe has been performed to find out the behavior of TES(twice elastic slop) plastic load of elbows, which is based on evaluation of the structural safety factor. Finally performance based structural safety factor was investigated comparing with maximum allowable load by construction code.

A Study on the Structural Fire Resistance Performance Design of RC Structural according to the Explosive Spalling - The Investigate Study on the PBD for Fire Resistance - (폭렬현상을 고려한 RC구조물의 PBD기반 구조내화설계 기술개발에 관한 연구(II) - PBD기반 구축을 위한 조사연구 -)

  • Lee, Jae-Young;Kim, Se-Jong;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.202-209
    • /
    • 2008
  • Performance based fire engineering design is being adopted around the world as a rationed means of providing efficient and effective fire safety in Building. This development is being supported by the adoption of performance based codes which specify the objective and minimum performance requirements for fire safety traditional design for fire safety which is still practiced in many countries, relies on "prescriptive" codes which specify how a building is to be built, which no statement of objective and little or no opportunity to offer more rational alterative design. It is the aim of this study to investigate and analyze the research direction of structural fire resistance design of RC structures for recommendation of PBD in Korea.

  • PDF

Analysis of the Correlation between the Thickness of Support Pin of Pipe Support and the Compressive Load (파이프 서포트의 지지핀 두께와 압축하중의 상관관계 분석)

  • Choi, Myeong Ki;Park, Jongkeun
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.36-43
    • /
    • 2022
  • Generally, in construction sites, the pipe support installation workers often use support pins of 9~10 mm which are much smaller than the safety standard sizes for work convenience. Although the safety certification standard thickness of the support pins is 11 mm, and the supervisors are often indifferent to this. Hence, products with far lower performance than the pipe support safety certification value of 40,000 N, which is applied in the supporting post-structural review, are used. Accordingly, this acts as a factor causing collapse accidents in the process of pouring concrete at the construction site. Therefore, this study performed compression experiments on new and reused pipe supports to determine how the thickness of the support pins affects the structural compression performance of the pipe support by considering the thickness of the support pins as a critical variable among various factors affecting the pipe support performance. In the course of the study, the compression test of the pipe support (V2, V4) for the new products showed that only 14 (58.3%) of the total 24 samples satisfied the safety certification standard value of 40,000 N, which indicates that more thorough quality control is required in the manufacturing process. Additionally, comparing the thickness of the support pins and their fracture shape shows that the pipes with support length of 4.0 m or longer are much more affected by the buckling of the entire length than the thickness of the support pins. Of the several factors affecting the performance of reused pipe supports, it was found that, similar to the new products, the use of support pins, with thickness of 12 mm rather than 11 mm, can satisfy the safety certification value more appropriately. Therefore, regardless of the state of usage, it could be concluded that it is necessary to use 12 mm products, whose thickness is larger than that of the safety certification standard value of 11 mm, to improve the performance of the pipe supports.

Guideline for Filling Performance of Concrete for Modular LNG Storage Tanks (모듈형 LNG 저장탱크용 콘크리트 충전성능 가이드라인 제시)

  • Lee, Dong Kyu;Lee, Keon Woo;Park, Gi Joon;Kim, Sung Wook;Park, Jung Jun;Kim, Young Jin;Choi, Myoung Sung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.86-93
    • /
    • 2018
  • Recently, the use of composite steel plate concrete structural modules filled with concrete between steel plates of complex internal structure, in which a large amount of studs are installed, is increasing in order to reduce the weight and to increase workability of structures such as LNG storage tanks. However, in Korea, there is no systematic criterion for evaluating the construction performance of composite steel plate concrete structural modules. Therefore, in this study, we propose a filling guideline of concrete for composite steel plate structural module. For this purpose, high filling performance concrete with general strength range was formulated and tested for filling ability and permeability for each formulation. Rheology analysis was performed to quantitatively evaluate the flow characteristics of concrete. The reliability of $T_{500}$ and plastic viscosity was evaluated to reflect the results of each test, and a guideline for high filling concrete satisfying the reliability of 0.9 or more was derived by reflecting the results of the study on the relationship between the $T_{500}$ and plastic viscosity. Through final fill-box test, filling performance was verified and guidelines were suggested.

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.