• 제목/요약/키워드: Structural performance optimization

검색결과 569건 처리시간 0.021초

다목적 최적화 방법을 이용한 구조설계 대안의 생성과 평가 (Generation and Evaluation of Structural Design Alternatives Using Multicriteria Optimization)

  • 양영순;유원선;김기화
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.199-209
    • /
    • 1998
  • Since most engineering problems have had open-ended and ill-defined characteristics, design process is in advance attended with determination of alternatives based on realistic constraints after definition of appropriate problem. And it is completed with selection of best alternative through their comparison and investigation, and with performance of selected-alternative's detail design. As the process of structural design compared with that of general design, this paper presents a paradigm which can generate structural design alternatives, select optimum structure among them and simultaneously set its optimum design variables in reference of several objective as a result in more extended design region. For this purpose, specialized genetic algorithms which can handle design alternatives and multicriteria problems is used.

  • PDF

Application of Collaborative Optimization Using Genetic Algorithm and Response Surface Method to an Aircraft Wing Design

  • Jun Sangook;Jeon Yong-Hee;Rho Joohyun;Lee Dong-ho
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.133-146
    • /
    • 2006
  • Collaborative optimization (CO) is a multi-level decomposed methodology for a large-scale multidisciplinary design optimization (MDO). CO is known to have computational and organizational advantages. Its decomposed architecture removes a necessity of direct communication among disciplines, guaranteeing their autonomy. However, CO has several problems at convergence characteristics and computation time. In this study, such features are discussed and some suggestions are made to improve the performance of CO. Only for the system level optimization, genetic algorithm is used and gradient-based method is used for subspace optimizers. Moreover, response surface models are replaced as analyses in subspaces. In this manner, CO is applied to aero-structural design problems of the aircraft wing and its results are compared with the multidisciplinary feasible (MDF) method and the original CO. Through these results, it is verified that the suggested approach improves convergence characteristics and offers a proper solution.

An integrated particle swarm optimizer for optimization of truss structures with discrete variables

  • Mortazavi, Ali;Togan, Vedat;Nuhoglu, Ayhan
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.359-370
    • /
    • 2017
  • This study presents a particle swarm optimization algorithm integrated with weighted particle concept and improved fly-back technique. The rationale behind this integration is to utilize the affirmative properties of these new terms to improve the search capability of the standard particle swarm optimizer. Improved fly-back technique introduced in this study can be a proper alternative for widely used penalty functions to handle existing constraints. This technique emphasizes the role of the weighted particle on escaping from trapping into local optimum(s) by utilizing a recursive procedure. On the other hand, it guaranties the feasibility of the final solution by rejecting infeasible solutions throughout the optimization process. Additionally, in contrast with penalty method, the improved fly-back technique does not contain any adjustable terms, thus it does not inflict any extra ad hoc parameters to the main optimizer algorithm. The improved fly-back approach, as independent unit, can easily be integrated with other optimizers to handle the constraints. Consequently, to evaluate the performance of the proposed method on solving the truss weight minimization problems with discrete variables, several benchmark examples taken from the technical literature are examined using the presented method. The results obtained are comparatively reported through proper graphs and tables. Based on the results acquired in this study, it can be stated that the proposed method (integrated particle swarm optimizer, iPSO) is competitive with other metaheuristic algorithms in solving this class of truss optimization problems.

Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns

  • Quang-Viet Vu;Sawekchai Tangaramvong;Thu Huynh Van;George Papazafeiropoulos
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.759-779
    • /
    • 2023
  • The paper proposes two hybrid metaheuristic optimization and artificial neural network (ANN) methods for the close prediction of the ultimate axial compressive capacity of concentrically loaded concrete filled double skin steel tube (CFDST) columns. Two metaheuristic optimization, namely genetic algorithm (GA) and particle swarm optimization (PSO), approaches enable the dynamic training architecture underlying an ANN model by optimizing the number and sizes of hidden layers as well as the weights and biases of the neurons, simultaneously. The former is termed as GA-ANN, and the latter as PSO-ANN. These techniques utilize the gradient-based optimization with Bayesian regularization that enhances the optimization process. The proposed GA-ANN and PSO-ANN methods construct the predictive ANNs from 125 available experimental datasets and present the superior performance over standard ANNs. Both the hybrid GA-ANN and PSO-ANN methods are encoded within a user-friendly graphical interface that can reliably map out the accurate ultimate axial compressive capacity of CFDST columns with various geometry and material parameters.

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

Robustness Design For Tall Timber Buildings

  • Voulpiotis, Konstantinos;Frangi, Andrea
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.245-253
    • /
    • 2020
  • With the ever-increasing height of timber buildings, the complexity of timber as a structural material gives rise to behaviors not previously studied by engineers. An urgent call is needed regarding their performance in damage scenarios: activating alternative load paths in tall timber buildings is not the same as in tall buildings made with steel and concrete. In this paper we propose a robustness framework covering all building materials, whose application in timber may lead to new conceptual designs for the next generation of tall timber buildings. Qualitatively, the importance of building scale and the distinction between localized and systematic exposures are discussed, and how existing supertall structures can be an example for future generations of tall timber buildings. Quantitatively, the robustness index is introduced alongside a method to calculate the performance of a given building regarding robustness, in order to find the most cost-effective structural solutions for improved robustness. A three-level application recommendation is made, depending on the importance of the building in question. Primarily, the paper highlights the importance of conceptual design to achieve structural robustness and encourages the practicing engineering community to use the proposed framework to quantitatively come up with the new generation of tall timber buildings.

반응표면법 및 크리깅을 이용한 아우터 타이로드의 구조 최적화 (Structural Optimization of an Outer Tie Rod Using RSM and Kriging)

  • 김영준;안교진;이권희;박영철
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.27-34
    • /
    • 2015
  • 본 연구에서는 기존의 연구로부터 아우터 타이로드는 다른 구조적인 특성보다는 좌굴특성이 가장 극악한 조건임을 알 수 있었다. 따라서 본 연구에서는 좌굴 성능만을 검토하여 최적설계를 수행하였다. 또한 개박 초기에 검토되었던 강 재질을 알루미늄으로 변경하여 경량화를 구현하였다. 알루미늄 아우터 타이로드에 대해 설계변수를 선정하고 반응표면법과 크리깅을 적용하여 각각 경량화 설계를 제시하였다.

The Effect of Rebirthing Technique on GA-based Size Optimization

  • LEE, Sang-Jin;LEE, Hyeon-Jin
    • Architectural research
    • /
    • 제11권2호
    • /
    • pp.19-26
    • /
    • 2009
  • The effect of rebirthing technique on the genetic algorithm (GA)-based size optimization is investigated. The GA mimics the principles of nature and it can gradually improve structural design through biological operations such as fitness, selection, crossover and mutation. However, premature optimum has been often detected in the generic GA with continuous design variable. Since then, the so-called rebirthing technique has been proposed to avoid this problem. However, the performance of the rebirthing technique has not been reported. Therefore, the size optimizations of spatial structures are tackled to investigate the performance of the rebirthing technique on the generic GA. From numerical results, it is well proved that the rebirthing technique is very effective to produce the optimum values regardless of the values of parameters used in the GA operations.

유전 알고리듬을 이용한 압전센서의 전극형상 최적화 (Electrode Shape Optimization of Piezo Sensors Using Genetic Algorithm)

  • 이기문;박현철;박철휴
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.698-704
    • /
    • 2006
  • This paper presents an electrode shape design method for the multi-mode sensors that could deteict the selected structural multiple modes. The structure used for this study is an isotropic cantilever beam type with a PVDF (polyvinylidene fluoride) which is bonded onto the structure as a sensor. The shape optimization problem is solved by using Genetic Algorithm (GA) with an appropriate objective function. The performance of analytical optimal shape sensor is compared with that of experimental work. The results show that the, obtained electrode shape sensors have good performance to detect the multiple vibration modes simultaneously.

다구찌법을 이용한 최적설계 알고리듬의 개발 및 구현 (Development of an Optimization Algorithm based on the Taguchi method)

  • 이상훈;곽병만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.565-571
    • /
    • 2001
  • As a method of structural optimization, a practical algorithm based on the Taguchi method is developed. The Taguchi method is applied iteratively updating the level values of design variables. The design region is translated or reduced during optimization and by appropriate choice of reduction factor and initial level intervals, a near-optimum solution can be found very efficiently. To treat inequality constraints, a variable penalty method is utilized. A software system named 'DS/Taguchi' is developed by integrating the proposed algorithm and commercial finite element analysis codes on the parametric CAD platform. Two examples are taken to examine the performance of the proposed algorithm and the developed software system.

  • PDF