References
- Alaimo, A., Milazzo, A. and Orlando, C. (2016), "Nonlinear model based particle swarm optimization of PID shimmy damping control", Adv. Aircr. Spacecrt. Sci., 3(2), 211-214. https://doi.org/10.12989/aas.2016.3.2.211
- Camp, C.V. and Bichon, B.J. (2004), "Design of space trusses using ant colony optimization", J. Struct. Eng., 130, 741-751. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741)
- Chen, D. and Zhao, C. (2009), "Particle swarm optimization with adaptive population size and its application", App. Soft Comput., 9, 39-48. https://doi.org/10.1016/j.asoc.2008.03.001
- Coello Coello, C.A. (2002), "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art", Comput. Meth. Appl. Mech. Eng., 191, 1245-1287. https://doi.org/10.1016/S0045-7825(01)00323-1
- Deb, K. and Gulati, S. (2001), "Design of truss-structures for minimum weight using genetic algorithms", Finite Elem. Anal. Des., 37, 447-465. https://doi.org/10.1016/S0168-874X(00)00057-3
- Dizangian, B. and Ghasemi, M.R. (2016), "An efficient method for reliable optimum design of trusses", Steel Compos. Struct., 21(5), 1069-1084. https://doi.org/10.12989/scs.2016.21.5.1069
- Erbatur, F., Hasancebi, O., Tutuncu, I. and Kilic, H. (2000), "Optimal design of planar and space structures with genetic algorithms", Comput. Struct., 75, 209-224. https://doi.org/10.1016/S0045-7949(99)00084-X
- Fan, Q. and Yan, X. (2014), "Self-adaptive particle swarm optimization with multiple velocity strategies and its application for p-Xylene oxidation reaction process optimization", Chemom. Intell. Lab. Syst., 139, 15-25. https://doi.org/10.1016/j.chemolab.2014.09.002
- Gholizadeh, S., Salajegheh, E. and Torkzadeh, P. (2008), "Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network", J. Sound Vib., 312, 316-331. https://doi.org/10.1016/j.jsv.2007.10.050
- Hajela, P. and Lee, E. (1995), "Genetic algorithms in truss topological optimization", Int. J. Solid. Struct., 32, 3341-3357. https://doi.org/10.1016/0020-7683(94)00306-H
- Hasancebi, O. (2008), "Adaptive evolution strategies in structural optimization: Enhancing their computational performance with applications to large-scale structures", Comput. Struct., 86, 119-132. https://doi.org/10.1016/j.compstruc.2007.05.012
- Hasancebi, O. and Erbatur, F. (2002), "On efficient use of simulated annealing in complex structural optimization problems", Acta Mech., 157, 27-50. https://doi.org/10.1007/BF01182153
- Hasancebi, O., Teke, T. and Pekcan, O. (2013), "A bat-inspired algorithm for structural optimization", Comput. Struct., 128, 77-90. https://doi.org/10.1016/j.compstruc.2013.07.006
- He, R.S. and Hwang, S.F. (2007), "Damage detection by a hybrid real-parameter genetic algorithm under the assistance of grey relation analysis", Eng. Appl. Artif. Intell., 20, 980-992. https://doi.org/10.1016/j.engappai.2006.11.020
- He, S., Prempain, E. and Wu, Q.H. (2004), "An improved particle swarm optimizer for mechanical design optimization problems", Eng. Optim., 36, 585-605. https://doi.org/10.1080/03052150410001704854
- Kaveh, A. and Talatahari, S. (2009a), "A particle swarm ant colony optimization for truss structures with discrete variables", J. Constr. Steel Res., 65, 1558-1568. https://doi.org/10.1016/j.jcsr.2009.04.021
- Kaveh, A. and Talatahari, S. (2009b), "Size optimization of space trusses using Big Bang-Big crunch algorithm", Comput. Struct., 87, 1129-1140. https://doi.org/10.1016/j.compstruc.2009.04.011
- Kaveh, A., Kalatjari, V. and Talebpour, M. (2016), "Optimal design of steel towers using a multi-metaheuristic based search method", Period. Polytech. Civil Eng., doi:10.3311/PPci.8222.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks, Perth, WA.
- Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
- Lee, K.S., Geem, Z.W., Lee, S.H. and Bae, K.W. (2005), "The harmony search heuristic algorithm for discrete structural optimization", Eng. Optim., 37, 663-684. https://doi.org/10.1080/03052150500211895
- Li, J.P. (2015), "Truss topology optimization using an improved species-conserving genetic algorithm", Eng. Optim., 47, 107-128. https://doi.org/10.1080/0305215X.2013.875165
- Li, L.J., Huang, Z.B. and Liu, F. (2009), "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87, 435-443. https://doi.org/10.1016/j.compstruc.2009.01.004
- Li, N.J., Wang, W.J., James Hsu, C.C., Chang, W., Chou, H.G. and Chang, J.W. (2014), "Enhanced particle swarm optimizer incorporating a weighted particle", Neurocomput., 124, 218-227. https://doi.org/10.1016/j.neucom.2013.07.005
- Nickabadi, A., Ebadzadeh, M.M. and Safabakhsh, R. (2011), "A novel particle swarm optimization algorithm with adaptive inertia weight", Appl. Soft Comput., 11, 3658-3670. https://doi.org/10.1016/j.asoc.2011.01.037
- Perez, R.E. and Behdinan, K. (2007), "Particle swarm approach for structural design optimization", Comput. Struct., 85, 1579-1588. https://doi.org/10.1016/j.compstruc.2006.10.013
- Rahami, H., Kaveh, A. and Gholipour, Y. (2008), "Sizing, geometry and topology optimization of trusses via force method and genetic algorithm", Eng. Struct., 30, 2360-2369. https://doi.org/10.1016/j.engstruct.2008.01.012
- Rajeev, S. and Krishnamoorthy, C. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng., 118, 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
- Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi, M. (2012), "Mine blast algorithm for optimization of truss structures with discrete variables", Comput. Struct., 102-103, 49-63.
- Sadollah, A., Eskandar, H., Bahreininejad, A. and Kim, J.H. (2015), "Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures", Comput. Struct., 149, 1-16. https://doi.org/10.1016/j.compstruc.2014.12.003
- Sonmez, M. (2011), "Artificial bee colony algorithm for optimization of truss structures", Appl. Soft Comput., 11, 2406-2418. https://doi.org/10.1016/j.asoc.2010.09.003
- Togan, V. and Daloglu, A.T. (2006), "Optimization of 3d trusses with adaptive approach in genetic algorithms", Eng. Struct., 28, 1019-1027. https://doi.org/10.1016/j.engstruct.2005.11.007
- Togan, V. and Daloglu, A.T. (2008), "An improved genetic algorithm with initial population strategy and self-adaptive member grouping", Comput. Struct., 86, 1204-1218. https://doi.org/10.1016/j.compstruc.2007.11.006
- Wu, S.J. and Chow, P.T. (1995), "Steady-state genetic algorithms for discrete optimization of trusses", Comput. Struct., 56, 979-991. https://doi.org/10.1016/0045-7949(94)00551-D
- Zheng, Y.J. (2015), "Water wave optimization: a new natureinspired metaheuristic", Comput. Oper. Res., 55, 1-11. https://doi.org/10.1016/j.cor.2014.10.008
Cited by
- Weight minimization of truss structures with sizing and layout variables using integrated particle swarm optimizer vol.23, pp.8, 2017, https://doi.org/10.3846/13923730.2017.1348982
- Large-scale structural optimization using a fuzzy reinforced swarm intelligence algorithm vol.142, pp.None, 2017, https://doi.org/10.1016/j.advengsoft.2020.102790
- Optimum design of shape and size of truss structures via a new approximation method vol.76, pp.6, 2017, https://doi.org/10.12989/sem.2020.76.6.799
- A new second-order approximation method for optimum design of structures vol.19, pp.1, 2017, https://doi.org/10.1080/14488353.2020.1798039
- Size and layout optimization of truss structures with dynamic constraints using the interactive fuzzy search algorithm vol.53, pp.3, 2017, https://doi.org/10.1080/0305215x.2020.1726341
- Solving structural optimization problems with discrete variables using interactive fuzzy search algorithm vol.79, pp.2, 2017, https://doi.org/10.12989/sem.2021.79.2.247
- Output-only structural damage detection under multiple unknown white noise excitations vol.79, pp.3, 2017, https://doi.org/10.12989/sem.2021.79.3.327