• Title/Summary/Keyword: Structural details

Search Result 645, Processing Time 0.024 seconds

Synchrotron Radiation Imaging of Tissues Using Phase Contrast Technique (방사광 위상차 현미경을 이용한 생체조직의 미세구조 영상)

  • Kang, Bo-Sun;Lee, Dong-Yeol;Kim, Ki-Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.2
    • /
    • pp.23-30
    • /
    • 2008
  • X-ray microscopy with synchrotron radiation(SR) might be a useful tool for novel x-ray imaging in the clinical and laboratory settings. Microscopically, it enables us to observe detailed structure of animal organs samples with a great magnification power and an excellent resolution. The phase contrast mechanisms in image by X-ray are described. The phase-contrast X-ray imaging with SR from in-vivo and in-vitro mouse tail, rat nerve and rat lung were obtained with an 8 KeV monochromatic beam. The visual image was magnified using 10x microscope objective lens and captured using an digital CCD camera. The results showed more structural details and high resolution images with SR imaging system than conventional X-ray radiography system. The SR imaging system may have a potential for imaging in biological researches, material applications and clinical radiography.

  • PDF

Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections (CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동)

  • Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.491-502
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to- flat plate connections has gained wide acceptance subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed strength and connection stiffness exceeding those of R/C flat p late counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of t to progressive collapse prevention design is also illustrated.

Seismic Performance of HyFo Beam with High Depth-to-SRC Column Connections (춤이 큰 하이브리드 합성보와 SRC기둥 접합부의 내진성능에 관한 연구)

  • Kim, Sung Bae;Jeon, Yong Han;Cho, Seong Hyun;Choi, Young Han;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.135-145
    • /
    • 2017
  • This study is a secondary study that is a cyclic seismic test of High depth hybrid composite beam and column connection after the primary bending strength test of a high depth Hybrid composite beam. Total of 3 seismic test specimens were prepared to cyclic test. The bracket and beam web spliced by high strength bolt and the bracket and beam upper flange was spliced by welding. Test results showed that the seismic strength was higher than the plastic moment($M_p$) in the positive negative moment section, the requirement of composite intermediate moment frame wes satisfied. Therefore, the requirement of intermediate moment frame can be secured by applying the details of connection of this study results.

Elastic Buckling Analysis of Laminated Composite Plates with Embedded Square Delamination Using an Enhanced Assumed Strain Solid Element (강화변형률 솔리드 요소를 사용한 사각형태 층간분리를 갖는 복합적층판의 탄성좌굴해석)

  • Park, Dae-Yong;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • Delamination reduces an elastic buckling load of the laminated composite structures and lead to global structural failure at loads below the design level. Therefore, the problem of the delamination buckling of laminated composite structures has generated significant research interest and has been the subject of many theoretical and experimental investigations. However, questions still remain regarding a complete understanding and details of the phenomena involved. In this paper an efficient finite element model is presented for analyzing the elastic buckling behavior of laminated composite plates with square embedded delamination using a solid element based on a three-dimensional theory. The solid finite element, named by EAS-SOLID8, based on an enhanced assumed strain method is developed. The study for elastic buckling behavior of laminated composite plates with embedded square delaminations are focused on various parameters, such as support condition and width-to-thickness ratio. Both graphs and buckling modes in this paper are good guide for design of the laminated composite plates with embedded square delamination.

  • PDF

Enhanced solid element for modelling of reinforced concrete structures with bond-slip

  • Dominguez, Norberto;Fernandez, Marco Aurelio;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.347-364
    • /
    • 2010
  • Since its invention in the $19^{th}$ century, Reinforced Concrete (RC) has been widely used in the construction of a lot of different structures, as buildings, bridges, nuclear central plants, or even ships. The details of the mechanical response for this kind of structures depends directly upon the material behavior of each component: concrete and steel, as well as their interaction through the bond-slip, which makes a rigorous engineering analysis of RC structures quite complicated. Consequently, the practical calculation of RC structures is done by adopting a lot of simplifications and hypotheses validated in the elastic range. Nevertheless, as soon as any RC structural element is working in the inelastic range, it is possible to obtain the numerical prediction of its realistic behavior only through the use of non linear analysis. The aim of this work is to develop a new kind of Finite Element: the "Enhanced Solid Element (ESE)" which takes into account the complex composition of reinforced concrete, being able to handle each dissipative material behavior and their different deformations, and on the other hand, conserving a simplified shape for engineering applications. Based on the recent XFEM developments, we introduce the concept of nodal enrichment to represent kinematics of steel rebars as well as bonding. This enrichment allows to reproduce the strain incompatibility between concrete and steel that occurs because of the bond degradation and slip. This formulation was tested with a couple of simple examples and compared to the results obtained from other standard formulations.

Vibration behaviors of a damaged bridge under moving vehicular loads

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.199-216
    • /
    • 2016
  • A large number of bridges were built several decades ago, and most of which have gradually suffered serious deteriorations or damage due to the increasing traffic loads, environmental effects, and inadequate maintenance. However, very few studies were conducted to investigate the vibration behaviors of a damaged bridge under moving vehicles. In this paper, the vibration behaviors of such vehicle-bridge system are investigated in details, in which the effects of the concrete cracks and bridge surface roughness are particularly considered. Specifically, two vehicle models are introduced, i.e., a simplified four degree-of-freedoms (DOFs) vehicle model and a more complex seven DOFs vehicle model, respectively. The bridges are modeled in two types, including a single-span uniform beam and a full scale reinforced concrete high-pier bridge, respectively. The crack zone in the reinforced concrete bridge is considered by a damage function. The bridge and vehicle coupled equations are established by combining the equations of motion of both the bridge and vehicles using the displacement relationship and interaction force relationship at the contact points between the tires and bridge. The numerical simulations and verifications show that the proposed modeling method can rationally simulate the vibration behaviors of the damaged bridge under moving vehicles; the effect of cracks on the impact factors is very small and can be neglected for the bridge with none roughness, however, the effect of cracks on the impact factors is very significant and cannot be neglected for the bridge with roughness.

A Study on Air Emission Spectra Observed by Using Electrothermal-Hollow Cathode Glow Discharge Spectrometry (Et-HCGDS) (Electrothermal-Hollow Cathode Glow Discharge Spectrometry(Et-HCGDS)를 이용하여 살펴본 Air Emission에 관한 연구)

  • Lee, Sang Chun;Shin, Jung-Sook;Kang, Mi-Ra
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.399-407
    • /
    • 1995
  • Electrothermal-Hollow Cathode Glow Discharge Spectrometry (Et-HCGDS) has been constructed in our laboratory for in-situ monitoring of traceble amounts of rare earth elements and actinides. Et-HCGDS is the portable glow discharge system that can perform the trace analysis of elements. The main structural design of Et-HCGDS was based upon the electrothermal heating and glow discharge techniques. More details on Et-HCGDS are available elsewhere. In this study, air was used as a flow gas for the glow discharge system. As a result, the emission spectra of air were collected and the assignment of air emission lines was performed with helps of pure nitrogen and oxygen emission spectra and previously published results. We found that the emission lines of air plasma were mainly due to nitrogen molecules. This paper includes the complete assignments of the air emission lines observed by using Et-HCGDS. Also, this study will be an useful reference for spectrochemical anaysis including air analysis.

  • PDF

Determinants of Credibility of Electronic Word-of-Mouth (eWOM) in WeChat-based Social Commerce: Applying the Heuristic-Systematic Model (중국의 웨이신(WeChat) 기반 소셜커머스에서 온라인 구전 신뢰성의 결정요인: 휴리스틱-체계적 모델(HSM)의 적용)

  • Qu, Min;Choi, Su-Jeong
    • The Journal of Information Systems
    • /
    • v.26 no.4
    • /
    • pp.107-135
    • /
    • 2017
  • Purpose Along with the growth of smart phones and social networking service (SNS), social commerce continues to expand. Although online reviews have become an important source of the information that consumers use to make purchasing decisions, theoretical development and empirical testing in this area are still limited. Thus, there is a need to develop further understanding about the influence of electronic word-of-mouth (eWOM). Drawing upon the heuristic - systematic model (HSM) which is one of the dual-process theories, this study develops a research model that explains key factors influencing consumers' eWOM credibility. Furthermore, this study verifies that consumer's eWOM credibility is a key determinant of eWOM and purchase intentions. Design/methodology/approach The proposed model is empirically tested with 493 users who have experience in WeChat-based social commerce. The structural equation model (SEM) analysis is used to evaluate the research model and hypotheses. Findings The major findings are as follows. First, argument quality of eWOM (a systematic factor) has a positive effect on eWOM credibility. Second, source credibility and recommendation consistency of eWOM (heuristic factors) are positively associated with eWOM credibility. Finally, purchase and eWOM intentions greatly depend on eWOM credibility. These results confirm the effectiveness of HSM in explaining eWOM mechanisms in SNS-based social commerce. The details of findings and implications are presented.

Development of PC Double Wall for Staircase Construction (계단실 공사를 위한 PC Double Wall 공법 개발)

  • Suh, Jung-Il;Park, Hong-Gun;Hwang, Hyeon-Jong;Im, Ju-Hyuk;Kim, Yong-Nam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.571-581
    • /
    • 2014
  • In the present study, hollow precast concrete wall (PC Double Wall) for staircase construction was developed. Comparing the conventional walls, the PC Double Wall can be reduced the lift weight using hollow core and improves the integrity between the PC members. The cross-section and re-bar details of the PC Double Wall were developed considering precast concrete manufacturing, constructability, and the structural safety. Particularly, a form system was developed to manufacture thin and hollow core PC wall efficiently. A mock-up test for a staircase using the PC Double wall was performed to verify the constructability and integrity of the PC walls. The test result verified that joint deformation and cracking did not occur as showing good constructability.

Estimation of groundwater inflow into an underground oil storage facility in granite

  • Wang, Zhechao;Kwon, Sangki;Qiao, Liping;Bi, Liping;Yu, Liyuan
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.1003-1020
    • /
    • 2017
  • Estimation of groundwater inflow into underground opening is of critical importance for the design and construction of underground structures. Groundwater inflow into a pilot underground storage facility in China was estimated using analytical equations, numerical modeling and field measurement. The applicability of analytical and numerical methods was examined by comparing the estimated and measured results. Field geological investigation indicated that in local scale the high groundwater inflows are associated with the appearance of open joints, fractured zone or dykes induced by shear and/or tensile tectonic stresses. It was found that 8 groundwater inflow spots with high inflow rates account for about 82% of the total rate for the 9 caverns. On the prediction of the magnitude of groundwater inflow rate, it was found that could both (Finite Element Method) FEM and (Discrete Element Method) DEM perform better than analytical equations, due to the fact that in analytical equations simplified assumptions were adopted. However, on the prediction of the spatial distribution estimation of groundwater inflow, both analytical and numerical methods failed to predict at the present state. Nevertheless, numerical simulations would prevail over analytical methods to predict the distribution if more details in the simulations were taken into consideration.