• Title/Summary/Keyword: Structural details

Search Result 645, Processing Time 0.022 seconds

A model for evaluating the fire resistance of contour-protected steel columns

  • Kodur, V.K.R.;Ghani, B.A.;Sultan, M.A.;Lie, T.T.;El-Shayeb, M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.559-572
    • /
    • 2001
  • A numerical model, in the form of a computer program, for evaluating the fire resistance of insulated wide-flange steel columns is presented. The three stages associated with the thermal and structural analysis in the calculation of fire resistance of columns is explained. The use of the computer program for tracing the response of an insulated steel column from the initial pre-loading stage to collapse, due to fire, is demonstrated. The validity of the numerical model used in the program is established by comparing the predictions from the computer program with results from full-scale fire tests. Details of fire tests carried out on wide-flange steel columns protected with ceramic fibre insulation, together with results, are presented. The computer program can be used to evaluate the fire resistance of protected wide-flange steel columns for any value of the significant parameters, such as load, section dimensions, column length, type of insulation, and thickness of insulation without the necessity of testing.

Strength deterioration of reinforced concrete column sections subject to pitting

  • Greco, Rita;Marano, Giuseppe Carlo
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.643-671
    • /
    • 2015
  • Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standards impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete column section load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of reinforced concrete columns sections.

Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure

  • Cho, Sang-Rai;Muttaqie, Teguh;Do, Quang Thang;Kim, Sinho;Kim, Seung Min;Han, Doo-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.711-729
    • /
    • 2018
  • This paper reports on the experimental investigations on the failure modes of ring-stiffened cylinder models subjected to external hydrostatic pressure. Nine models were welded from general structural steel. The shells were initially formed by cold-rolling, and flat-bar ring frames were welded to the shell. The hydrostatic pressure tests were conducted by using water as the medium in pressure chambers. The details of the preparation and main test were briefly explained. The investigation identified the consequence of the structural failure modes, including: shell yielding, local shell buckling between ring stiffeners, overall buckling of the shell together with the stiffeners, and interactive buckling mode combining local and overall buckling. In addition, the ultimate strengths were predicted by using existing design codes. Non-linear numerical computations were also conducted by employing the actual imperfection coordinates. Finally, accuracy and reliability of the predictions of design formulae and numerical were substantiated with the test results.

FORTRAN Program "PHYLS" for the Geometrical Prediction of the Structures of 1M and $2M_1$ 2:1 Phyllosilicates Having Space Groups C2/m, C2, and C2/c (공간군 C2/m, C2, 및 C2/c를 갖는 1M 및 $2M_1$ 2:1 층상 규산염 광물 구조의 기하학적 예측을 위한 포트란 프로그램 "PHYLS")

  • ;M. Slaughter
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.45-67
    • /
    • 1998
  • FORTRAN program PHYLS was developed to model the structures of 2:1 1M and 2M1 phyllosilicates on the basis of geometrical analyses. Input to PHYLS requires the chemical composition and d(001) spacing of the mineral. The output from PHYLS consists of the coordinates of the crystallographically independent sites in the unit cell, and such structural parameters as the cell dimensions, interaxial angle, cell volume, interatomic distances, and deformation angles of the polyhedra. PHYLS can generate these structural details according to the user's choice of space group and cation configuration. User can choose one of such space groups as C2/m, C2,and C2/c and such cation configurations as random and ordered tetrachedral/octahedral cation configurations. PHYLS simulated the structures of dioctahedral and trioctahedral phyllosilicates having random tetrahedral cation configuration fairly close to the reported experimentally determined structures. In contrast, the simulated structures for ordered tetrahedral cation configurations showed greater deviation from the experimentally determined structures than those for random configurations. However, if the cations were partially ordered and the sizes of the tetrahedra became similar, the simulated PHYLS may be helpful in various investigations on the relationships between structures and physicochemical properties of the phyllosilicates.

  • PDF

Effect of Composite Re-bars Embedded in Concrete on Surface Electrical Resistivity of Concrete (콘크리트내 섬유복합체 보강근이 표면저항치에 미치는 영향)

  • Moon, Do Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.212-218
    • /
    • 2011
  • The effect of composite reinforcing bars on surface electrical resistivity of concrete was investigated through experimental program. The resistivity was measured by Wenner method using an equipment with 4 probe. Ordinary steel, GFRP, and CFRP reinforcing bars produced domestically were used and a specimen with no reinforcement was tested for the comparison. This investigation is motivated from the fact that measured value of resistivity of concrete is significantly affected by details of steel reinforcements, such as location, depth and direction of the internal steel reinforcement. These results could be valuable data for evaluation of corrosion degree of concrete structures reinforced or strengthened by the composite reinforcing bars.

Development of Improved PC Stair Connections Using U-Rods (U형 강봉을 사용한 PC 계단 접합부 개발)

  • Chang, Kug-Kwan;Seo, Dae-Won;Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.509-516
    • /
    • 2011
  • Compared with the traditional RC system, precast stairs can save construction time, reduce the cost of concrete casting, etc. This paper focuses on an investigation of improved continuous longitudinal joint details for PC stair systems. The performance of the precast concrete stair connections subjected to displacement control cyclic loading is compared with that of the monolithic connection. The developed connection is composed of U-rods and clamp joint metals. This paper proposes precast stair connection with improved structural performance and experimentally evaluates the structural performance of the proposed joints in terms of maximum load, displacement ductiliy, strain, crack and failure modes.

Hysteretic Behavior of Precast Concrete Large Panel Structures Subjected to Horizontal Cyclic Loading (반복 횡하중을 받는 프리캐스트 대형 콘크리트 판구조의 이력특성에 관한 실험적 연구)

  • Seo, Soo-Yeon;Yi, Waon-Ho;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1999
  • Main objective of this study is to examine the hysteretic behaviors and to evaluate the capacity of precast concrete (PC) large panel structures simulated from the prototype of 15-story building, Two 1/2 scaled precast concrete wall specimens and one monolithic reinforced concrete specimen were designed and tested under the cyclic loading conditions. The main parameter of test specimens in PC large panel structure is the type of details for vertical continuity of vertical steel in horizontal joint. Also the behaviors of PC large panel structures are compared with that of monolithic reinforcement concrete wall structure. From the results, the stiffness and energy dissipation ratio of the precast concrete specimens are shown little bit lower than those of monolithic reinforced concrete specimen. In the PC large panel structures, the specimen connected vertically by welding (strong connection) showed higher strength than that of the specimen connected vertically by joint box. However the failure pattern of the former showed more brittle than that of the latter due to the diagonal compressive failure of wall panels.

  • PDF

Li+ and Li+I-Li+ ions Solvated by 1,4-dioxane: An ion Mobility Spectrometry-Mass Spectrometry Study

  • Choi, Yunseop;Ji, Inyong;Seo, Jongcheol
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.152-158
    • /
    • 2021
  • Electrospray ionization (ESI) and ion mobility spectrometry-mass spectrometry (IMS-MS) were employed to investigate the solvated structures of ionic species in the lithium iodide electrolyte solution in the gas phase. The Li+I-Li+ triple ion and single standalone Li+ ions solvated by 1,4-dioxane were successfully generated and observed by ESI-MS under the influence of dioxane vapor at the inlet region. Under the present experimental condition, (1,4-dioxane)m·Li+ complex ions (m = 1, 2, and 3) and a (1,4-dioxane)·Li+I-Li+ complex ion were observed, which were further examined by IMS to investigate their structures. The presence of multiple structural isomers was confirmed, which accounts for the endothermic conformational transition of 1,4-dioxane from a chair to a boat to achieve bidentate O-donor binding to Li+ and Li+I-Li+. Further structural details critical for the ion-solvent interactions were also examined and discussed with the help of density functional theory calculations.

Effect of connection modeling on the seismic response of steel braced non-moment resisting frames

  • Bagheri, Saman;Tabrizi, Navid Vafi
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.591-601
    • /
    • 2018
  • Non-moment beam-to-column connections, which are usually referred to as simple or shear connections, are typically designed to carry only gravity loads in the form of vertical shears. Although in the analysis of structures these connections are usually assumed to be pinned, they may provide a small amount of rotational stiffness due to the typical connection details. This paper investigates the effects of this small rotational restraint of simple beam-to-column connections on the behavior and seismic response of steel braced non-moment resisting frames. Two types of commonly used simple connections with bolted angles, i.e., the Double Web angle Connection (DWC) and Unstiffened Seat angle Connection (USC) are considered for this purpose. In addition to the pinned condition - as a simplified representation of these connections - more accurate semi-rigid models are established and then applied to some frame models subjected to nonlinear pushover and nonlinear time history analyses. Although the use of bracing elements generally reduces the sensitivity of the global structural response to the behavior of connections, the obtained results indicate considerable effects on the local responses. Namely, our results show that consideration of the real behavior of connections is essential in designing the column elements where the pin-connection assumption significantly underestimates design of outer columns of upper stories.

Self Sensing Reinforcement Combined with Fiber-Optic Sensor and FRP Strip for Structural Reinforcement (구조물 보강용 FRP 판과 광섬유 센서가 결합된 자기감지 보강재)

  • Song, Se-Gi;Seo, Soo-Yeon;Kim, Kang Su
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.123-130
    • /
    • 2019
  • Recently, it is required to develop a monitoring technology that combines an FBG sensor as a means for continuously monitoring whether reinforcing effect of FRP is maintained on FRP reinforced structural members. However, most existing researches focus on the insertion of FBG sensors into bar-shaped FRPs, and there is insufficient study on the details strip-type FRPs combined with FBG sensors. Therefore, in this paper, it is studied to develop a reinforcement in which a FBG sensor is combined with a FRP strip. Especially, combination of FRP and FBG sensor. For this, a series of experiments were performed to find the adhesive strength of fiber-FRP-epoxy joints, the tensile strength of FBG sensor part with reflection-lattice, and the performance depending on the connection method of FRF and FBG sensor. As a result of the study, it was found that a minimum strength of $216.15N/mm^2$ is required for incorporating FBG sensors in FRP using epoxy. It is considered that the adhesion length of epoxy joints should be more than 50mm. When the FBG sensor is attached to the FRP strip as an epoxy, it is considered appropriate to use the complete attachment and the sensor non-attachment method.