• Title/Summary/Keyword: Structural concrete

Search Result 7,018, Processing Time 0.028 seconds

The multi-axial strength performance of composited structural B-C-W members subjected to shear forces

  • Zhu, Limeng;Zhang, Chunwei;Guan, Xiaoming;Uy, Brian;Sun, Li;Wang, Baolin
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • This paper presents a new method to compute the shear strength of composited structural B-C-W members. These B-C-W members, defined as concrete-filled steel box beams, columns and shear walls, consist of a slender rectangular steel plate box filled with concrete and inserted steel plates connecting the two long-side steel plates. These structural elements are intended to be used in structural members of super-tall buildings and nuclear safety-related structures. The concrete confined by the steel plate acts to be in a multi-axial stressed state: therefore, its shear strength was calculated on the basis of a concrete's failure criterion model. The shear strength of the steel plates on the long sides of the structural element was computed using the von Mises plastic strength theory without taking into account the buckling of the steel plate. The spacing and strength of the inserted plates to induce plate yielding before buckling was determined using elastic plate theory. Therefore, a predictive method to compute the shear strength of composited structural B-C-W members without considering the shear span ratio was obtained. A coefficient considering the influence of the shear span ratio was introduced into the formula to compute the anti-lateral bearing capacity of composited structural B-C-W members. Comparisons were made between the numerical results and the test results along with this method to predict the anti-lateral bearing capacity of concrete-filled steel box walls. Nonlinear static analysis of concrete-filled steel box walls was also conducted by using ABAQUS and the results agreed well with the experimental data.

Post-fire Repair of Concrete Structural Members: A Review on Fire Conditions and Recovered Performance

  • Qiu, Jin;Jiang, Liming;Usmani, Asif
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.323-334
    • /
    • 2021
  • Concrete structures may rarely collapse in fire incidents but fire induced damage to structural members is inevitable as a result of material degradation and thermal expansion. This requires certain repairing measures to be applied to restore the performance of post-fire members. A brief review on investigation of post-fire damage of concrete material and concrete structural members is presented in this paper, followed by a review of post-fire repair research regarding various types of repairing techniques (FRP, steel plate, and concrete section enlargement) and different type of structural members including columns, beams, and slabs. Particularly, the fire scenarios adopted in these studies leading to damage are categorized as three levels according to the duration of gas-phase temperature above 600℃ (t600). The repair effectiveness in terms of recovered performance of concrete structural members compared to the initial undamaged performance has been summarized and compared regarding the repairing techniques and fire intensity levels. The complied results have shown that recovering the ultimate strength is achievable but the stiffness recovery is difficult. Moreover, the current fire loading scenarios adopted in the post-fire repair research are mostly idealized as constant heating rates or standard fire curves, which may have produced unrealistic fire damage patterns and the associated repairing techniques may be not practical. For future studies, the realistic fire impact and the system-level structural damage investigation are necessary.

Structural Characteristics of Concrete Filled Glass Fiber Reinforced Composite Tube (콘크리트 충진 유리섬유 복합소재 튜브 합성압축부재의 구조적 특성분석)

  • 이성우;박신전;최석환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.571-574
    • /
    • 1999
  • Due to many advantages of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member si studied. Experimental results shows that strength and ductility of composite compression member is considerably increased due to concrete confinement action of composite surface. Thus it can be anticipated that increased strength of concrete will be incorporated in the design of composite compression member.

  • PDF

Development of Integrity Evaluation Techniques for Concrete Structures (콘크리트 구조물의 건전성 평가 기법 개발)

  • 정연주;김도겸;이장화;조명석;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.623-626
    • /
    • 1999
  • Structural integrity in concrete structures are affected by materialistic and environmental factors. Therefore, to develop a objective integrity evaluation method is extremely difficult. In this study, preliminary integrity evaluation method for concrete structures was proposed by conducting by visual and detailed inspection for in-situ conditions based on the weighting factors for structural significance and integrity degrading factors of each element constituting concrete structures.

  • PDF

Literature Study on the Durability Design Method of Reinforced Concrete Structure (철근콘크리트 구조물의 내구성 설계수법에 관한 문헌적 연구)

  • 신성우;이한승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.421-426
    • /
    • 1999
  • The purpose of this study is to investigate the durability design method of reinforced concrete structure in order to establish a rationally combined design system of structural and durability design, that is to say performance-based design. In literature study, the integrated design of concrete structure studied JCI committe is very intensive durability design method for reinforced concrete structure. Specially, B root durability design method for selection of verification level is very effective method in the view of modeling of materials and structural properties to analyze safety and serviceability of RC structures.

  • PDF

Fatigue Behavior of Reinforced Dual Concrete Beam (철근 이중 콘크리트 보의 피로 거동)

  • Park, Tae-Hyo;Lee, Sang-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.37-40
    • /
    • 2005
  • Reinforced dual concrete beam (RDC beam) is the reformed system that improves the overall structural properties of beam by partially applying high performance steel fiber reinforced concrete (HPSFRC) in the lower tension part of conventional reinforced concrete beam (RC beam). Fatigue test was done to prove the structural superiority of RDC beam. As a result of fatigue test, the deflection of RDC beam was decreased obviously and the slope of number of cycle-deflection relation curve of RDC beam was increased gently in comparison with RC beam.

  • PDF

An Experimental Study on Structural Behavior of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 구조거동 실험 연구)

  • Yang, In-Hwan;Joh, Chang-Bin;Kang, Su-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.105-106
    • /
    • 2009
  • The flexural performance of high-strength concrete beams reinforced with steel fibers is described. This study aims at determining the structural behavior of steel fiber reinforced concrete beams such as failure mode, capacity in flexure, crack patterns, strains in concrete.

  • PDF

Finite element modelling of reinforced concrete structures with laboratory verification

  • Cheng, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.593-609
    • /
    • 1995
  • The presence of reinforcement has a significant influence on the stress-strain behaviour of reinforced concrete structures, expecially when the failure stage of the structures is approached. In the present paper, the constrained and non-constrained zones of concrete due to the presence of reinforcement is developed and the stress-stress-strain behaviour of concrete is enhanced by a reinforcement confinement coefficient, Furthermore, a flexible method for the modelling of reinforcement with arbitrary orientation and not passing the nodes of concrete element is also proposed. Numerical examples and laboratory tests have shown that the coefficient and the modelling technique proposed by the author are satisfactory.

Nonlinear Analysis of Concrete Using ABAQUS User Material(UMAT) (ABAQUS User Material(UMAT)을 이용한 콘크리트 비선형 해석)

  • 조병완;김장호;김영진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.145-152
    • /
    • 2003
  • This paper develops a relatively comprehensive and sophisticated constitutive model of concrete for finite element analysis of concrete structures. The present model accounts for the hydrostatic pressure sensitivity and Lode angle dependence behavior of concrete, not only in its strength criterion, but also in its hardening characteristics. The implementation is carried out through incorporating the developed concrete model in User Subroutine Material(UMAT) of the general-purpose FE program ABAQUS(v.5.8). It is found that the model can sufficiently predict the hardening as well as the softening behaviour of concrete under high confining pressure.

  • PDF

A Study on Development of Monitoring System for Precise Consturction of Large Scale Prestressed Concrete Bridges (PC장대교량의 정밀안전시공을 위한 시공계측관리시스템의 개발에 관한 연구)

  • 오병환;김의성;최인혁;양인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.520-525
    • /
    • 1996
  • Recently, the prestressed concrete long-span bridegs are increasingly built at various locations in the world. The mechanical and structural behavior of prestressed concrete bridges is very complex because of nonlinear and time-dependent material behavior and sequential change of structural system due to stepwise construction. These factors may cause construction errors with respect to design value and monitoring system is needed to minimize or to protect construction errors. This study presents the basis development of monitoring system for precise construction of large scale prestressed concrete bridges.

  • PDF