• Title/Summary/Keyword: Structural behaviour

Search Result 1,011, Processing Time 0.031 seconds

Constructibility Characteristice of Wood Frames of Lateral Cyclic Load - Geungnakjeon Hall of Bongjeongsa Temple - (수평하중에 대한 목조프레임의 결구공법에 대한 연구 - 봉정사(鳳停寺) 극락전(極樂殿)을 대상으로 -)

  • Lee, Ho;Lee, Taick-Oun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.255-262
    • /
    • 2007
  • The main purpose of this study is to figure out of seismic structural behaviour of Gukrakjeon of Bongjung-Temple which is the oldest wooden architecture in Korea, and to evaluate in engineering aspect of seismic records. The non-lineal analysis is essential for accurate evaluation of wooden architecture in seismic behaviour. Based on the experimental test with applying cycle forces in joint specimens is focusing on not only to prove the structural characteristics, but also to evaluate damping ratio, As the result of this test, damping ratio is affected not the joint methods but the frame variations. The average damping ratio was 26%.

  • PDF

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

Analysis and tests of flexibly connected thin-walled channel frames

  • Tan, S.H.;Seah, L.K.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.269-284
    • /
    • 1994
  • The analysis and tests of thin-walled channel frames including nonlinear flexible or semi-rigid connection behaviour is presented. The semi-rigid connection behaviour is modelled using a mathematical approximation of the connection flexibility-moment relationship. Local instability such as local buckling and torsional flexural buckling of the member are included in the analysis. The full response of the frame, up to the collapse load, can be predicted. Experimental investigation was carried out on a series of simple double storey symmetrical frames with the purpose of verifying the accuracy and validity of the analysis. Agreement between the theoretical and experimental results is acceptable. The investigation also shows that connection flexibility and local instability such as local buckling and torsional flexural buckling can affect the behaviour and strength of thin-walled frames significantly. The results can also provide further insight into the advanced study of practical structures where interaction between flexible connections and phenomenon associated with thin-walled members are present.

Behaviour of fiber reinforced concrete beams with spliced tension steel reinforcement

  • Safan, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.623-636
    • /
    • 2012
  • The aim of the current work is to describe the flexural behaviour of simply supported concrete beams with tension reinforcement spliced at mid-span. The parameters included in the study were the type of the concrete, the splice length and the configuration of the hooked splice. Fifteen beams were cast using an ordinary concrete mix and two fiber reinforced concrete mixes incorporating steel and polypropylene fibers. Each concrete mix was used to cast five beams with continuous, spliced and hooked spliced tension steel bars. A test beam was reinforced on the tension side with two 12 mm bars and the splice length was 20 and 40 times the bar diameter. The hooked bars were spliced along 20 times the bar diameter and provided with 45-degree and 90-degree hooks. The test results in terms of cracking and ultimate loads, cracking patterns, ductility, and failure modes are reported. The results demonstrated the consequences due to short splices and the improvement in the structural behaviour due to the use of hooks and the confinement provided by the steel and polypropylene fibers.

A Comparative Study on the Displacement Behaviour of Triangular Plate Elements (삼각형 판 요소의 변위 거동에 대한 비교 연구)

  • 이병채;이용주;구본웅
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 1992
  • Static performance was compared for the triangular plate elements through some numerical experiments. Four Kirchhoff elements and six Mindlin elements were selected for the comparison. Numerical tests were executed for the problems of rectangular plates with regular and distorted meshes, rhombic plates, circular plates and cantilever plates. Among the Kirchhoff 9 DOF elements, the discrete Kirchhoff theory element was the best. Element distortion and the aspect ratio were shown to have negligible effects on the displacement behaviour. The Specht's element resulted in better results than the Bergan's but it was sensitive to the aspect ratio. The element based on the hybrid stress method also resulted in good results but it assumed to be less reliable. Among the linear Mindlin elements, the discrete shear triangle was the best in view of reliability, accuracy and convergence. Since the thin plate behaviour of it was as good as the DKT element, it can be used effectively in the finite element code regardless of the thickness. As a quadratic Mindlin element, the MITC7 element resulted in best results in almost all cases considered. The results were at least as good as those of doubly refined meshes of linear elements.

  • PDF

Structural Analysis for Thread Joint Part of Rocket Motor Case Applied Pre-load (초기하중을 받는 로켓모타 케이스 나사체결부의 구조해석)

  • Koo, Song-Hoe;Cho, Won-Man;Lee, Bang-Eop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.144-149
    • /
    • 2007
  • Behaviour of a thread joint of a rocket motor case show complex structural characteristics. Pre-torque must be applied to the threads to prevent the loosening of the interface from the additional pressure load. During the pressurization of the rocket motor case, the jointing face may be opened if the pre-torque were not set properly or the structure may be failed if the local concentrated stress exceeds the strength of the material. In this paper, the structural behaviour of a thread joint of a rocket motor case were analyzed by the finite element method and the results were compared to the experimental ones. A method to set a pre-torque for a thread joint were proposed to ensure the structural safety.

An experimental study on structural behaviour of the MMA double wide flanged GFRP pipe composite structures (II) (MMA 이중 플랜지를 갖는 GFRP 복합관 구조거동에 관한 실험 연구 (II))

  • Ji, Hyo-Seon;Mamdouh, El-Badry
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.50-61
    • /
    • 2015
  • This paper presents on the structural behavior of the the methyl methacrylate monomer (MMA) double wide flanged the glass fiber-reinforced polymer(GFRP) pipe composite structures for the manhole raise. The evaluation of structural performance on this composite structure was conducted by the axial load, fatigue load, and ultimate load test. The assessment indicates that the MMA double wide flanged GFRP pipe composite structures was confirmed safety, durability and reliability in result as expected. It was found that this composite structure was able to short working times to around 30-50% and construction costs to around 10-23% with compare other construction methods. Also, environmental pollution and civil complaints will be prevented because there will be no longer any noises, vibrations, dust, or construction wastes.

Neural network based modeling of infilled steel frames

  • Subramanian, K.;Mini, K.M.;Josephine Kelvina Florence, S.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.495-506
    • /
    • 2005
  • A neural network based model is developed for the structural analysis of masonry infilled steel frames, which can account for the non-linearities in the material properties and structural behaviour. Using the data available from the analytical methods, an ANN model with input parameters consisting of dimension of frame, size of infill, properties of steel and infill was developed. It was found to be acceptable in predicting the failure modes of infilled frames and corresponding failure load subject to limitations in the training data and the predicted results are tested using the available experimental results. The study shows the importance of validating the ANN models in simulating structural behaviour especially when the data are limited. The ANN model was also compared with the available experimental results and was found to perform well.

Structural analysis of cracked R.C. members subjected to sustained loads and imposed deformations

  • Mola, F.;Gatti, M.C.;Meda, G.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.637-650
    • /
    • 2001
  • A structural analysis of cracked R.C. members under instantaneous or sustained loads and imposed displacements is presented. In the first part of the paper the problem of deriving feasible moment-curvature diagrams for a long term analysis of R.C. sections is approached in an exact way by using the Reduced Relaxation Function Method in state I uncracked and the method suggested by CEB in state II cracked. In both states the analysis of the main parameters governing the problem has shown that it is possible to describe the concrete creep behaviour in an approximate way by using the algebraic formulation connected to the Effective Modulus Method. In this way the calculations become quite simple and can be applied in design practice without introducing significant errors. Referring to continuous beams, the structural analysis is then approached in a general way, applying the Force Method and the Principle of Virtual Works. Finally, considering single members, the structural analysis is performed by means of a graphical procedure based on the application of feasible moment-rotation diagrams which allow to easily solve various structural problems and to point out the most interesting aspects of the long term behaviour of cracked R.C. members with rigid or elastically deformable redundant restraints.

Experimental characterization of timber framed masonry walls cyclic behaviour

  • Goncalves, Ana Maria;Ferreira, Joao Gomes;Guerreiro, Luis;Branco, Fernando
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.189-204
    • /
    • 2015
  • After the large destruction of Lisbon due to the 1755 earthquake, the city had to be almost completely rebuilt. In this context, an innovative structural solution was implemented in new buildings, comprising internal timber framed walls which, together with the floors timber elements, constituted a 3-D framing system, known as "cage", providing resistance and deformation capacity for seismic loading. The internal timber framed masonry walls, in elevated floors, are constituted by a timber frame with vertical and horizontal elements, braced with diagonal elements, known as Saint Andrew's crosses, with masonry infill. This paper describes an experimental campaign to assess the in-plane cyclic behaviour of those so called "frontal" walls. A total series of 4 tests were conducted in 4 real size walls. Two models consist of the simple timber frames without masonry infill, and the other two specimens have identical timber frames but present masonry infill. Experimental characterization of the in-plane behaviour was carried out by static cyclic shear testing with controlled displacements. The loading protocol used was the CUREE for ordinary ground motions. The hysteretic behaviour main parameters of such walls subjected to cyclic loading were computed namely the initial stiffness, ductility and energy dissipation capacity.