• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.038 seconds

The Response Characteristics of Push-over and Nonlinear Time History Analysis with Variations in the Upper Stories of the Mixed Building Structure (복합구조물의 상부층수 변화에 따른 탄소성 정적 및 동적 응답특성)

  • 강병두;전대한;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.73-83
    • /
    • 2001
  • The mass and stiffness of upper wall-lower frame system(mixed building structures) change sharply at transfer floor due to different structural system in upper and lower part. These mixed building structures generally show the stiffness, weight or geometric vertical irregularities. The purpose of this study is to investigate the response characteristics of these structures by push-over analysis and nonlinear time history analysis. For four types of analysed models, only the variation of upper wall stories was considered. The conclusions of this study are following; (1) In the push-over analysis, yielding hinges in beams and columns of lower frame occurred at the base shear of similar magnitude in all models. But as the number of stories of upper wall increases, yielding hinges at ends of coupling beams were observed in the small magnitude of base shear. (2) In the nonlinear time history analysis, yielding of lower frame occurred at beams with as small ground acceleration as 55gal, and in upper walls yielding was concentrated on coupling beams and shear walls near the transfer floor. (3) As the number of stories of upper walls decreases, the story stiffness of the lower frames decreased relatively and the occurrence of soft stories in the lower frame was observed.

  • PDF

Effect of Fucoidan Extracted from Hizikia fusiforme on Intestinal Villi and Salmenolla spp. in Broiler Chicks (톳추출 Fucoidan이 병아리 장내 Villi 및 Salmonella 균주에 미치는 영향)

  • 김창혁;박재인
    • Korean Journal of Poultry Science
    • /
    • v.30 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • This study was conducted to investigate the in vivo and in vivo antibiotic effect of crude fucoidan extracted from Hizikia fusiforme, and to investigate any possible structural changes of broiler chick's intestinal villi by the supplementation of fucoidan. Total 84 broiler chicks were randomly assigned to 7 treatments, control and Salmonella typhimurium infection groups. The broiler chicks was infected with Salmonella typhimurium at third days, and antibiotics, fucoidan, dried Hizikia fusiforme, dried Undaria pinnatifida and yeast cell debris was respectively supplemented for each group. Each treatment had 4 chicks with three replications. Extraction yield of crude fucoidan from Hizikia fusiforme was 5.453%. Antibiotic effect of fucoidan was not detected in vitro, inhibition zone and micoorganism growth test. Weight gains of broiler chicks were tend to higher in fucoidan treatment group and yeast cell significance was not found. In in vivo test, the number of viable Salmonella typhimurium was low in the antibiotics and fucoidan treatment groups. The intestinal villi were short in the fucoidan and marine algae treatment groups. The intestinal villi were densely distributed on the large intestinal wall, but the morphology was not different among treatments.

Structural Charateristics of Silk Fibroin Gel on The Preparation Conditions (Silk Fibroin Gel의 제조조건에 따른 구조특성)

  • Lee, Kwang-Gill;Lee, Young-Woo;Yeo, Joo-Hong;Nam, Jin;Kweon, Hae-Young;Park, Young-Hwan
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • Silk fibroin dissolved in highly concentrated calcium chloride and ethanol mixture aqueous solution turned into gel under suitable conditions. Preparation conditions and properties of gel were investigated as a function of parameters such as pH of solution, fibroin concentration, glycerol concentration and molecular weight. When pH of silk fibroin aqueous solution was near the isoelectronic point(pH 3.9~4.0), gelation occurred rapidly and strength of gel was stonger than that of pH-unadjusted due to electrostatic repulsion decrease between silk fibroin macromolecules. As concentration of silk fibroin and glycerol was higher, gelation occurred more rapid. FT Infra-red spectra of freeze-dried fibroin gel showed that gelation was derived by intermolecular anti-parallel ${\beta}$-sheet structure formation. In addition to, it was found that white-precipitate occurred instead of gelation when aqueous silk fibroin was treated by enzyme(flavouzyme), however, after flavouzyme-treated silk fibroin aqueous solution was centrifugated gelation occurred instantly. The results of differential scanning thermal analysis and infra-red spectroscopy showed that thermal stability and crystallinity of enzyme-hydrolyzed fibroin are superior to those of unhydrolyzed fibroin.

  • PDF

Structural Analysis of Milled Wood Lignins Isolated From Aspen Wood (Populus tremuloides L.) Biotreated by Ceriporiopsis subvermispora (Ceriporiopsis subvermispora 처리에 의한 아스펜 목재 리그닌의 구조 변화)

  • Choi, Joon-Weon;Moon, Sung-Hee;Ahn, Sye-Hee;Choi, Don-Ha;Paik, Ki-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.79-86
    • /
    • 2005
  • Aspen wood (Populus tremuloides, L.) was biotreated with Ceriporiopsis subvermispora for 1, 2, 4, and 6 weeks to observe the physical/chemical modification of wood components. Milled wood lignins (MWLs) isolated from each decayed wood were analyzed by gel permeation chromatography (GPC) and nitrobenzene oxidation (NBO). As fungal treatment was progressed, lignin contents continuously decreased up to 20% after 6-week treatment. The lignin polymer could be fragmented to low-molecular phenolics, which make an enhancement of alkali solubility. Holocellulose contents were not affected severely during the period of fungal treatment, only reduction of 5~6% compared to the control. Xylose contents were decreased gradually from 23.4% to 18% after 6 weeks, whereas alpha-cellulose remained almost unchanged. Gel permeation chromatography (GPC) indicates that molecular weight of lignin undergoes a slight decrement for 4 weeks of fungal treatment. Nitrobenzene oxidation revealed that total yield of NBO products of lignins were lowered ca 20% after fungal treatment. Sum of syringaldehyde and syringic acid are remarkably decreased. However, increment of sum of vanillin and vanillic acid was surprisingly observed. These results work as indirect evidence that a specific lignolytic reaction, maybe selective demethoxylaytion of S-lignin, can occur during fungal treatment of aspen wood by C. subvermispora.

Flexural Strength Analysis of RC T-Beams Strengthened Using Fiber Sheets (섬유시트로 보강된 T형 철근콘크리트보의 휨 강도 해석)

  • Park, Tae-Hyo;Lee, Gyu-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.234-245
    • /
    • 2003
  • Most of the concrete bridge structures are exposed to damage due to the excessive traffic loading and the aging of the structure. The damage of concrete causes the further deterioration of the function in the concrete structure due to corrosion of the reinforced bars and decohesion between the concrete and the reinforced bar. The quick rehabilitation of the damaged concrete structures has become of great importance in the concrete structural system in order to avoid the further deterioration of the structures. Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for assessing the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on bottom face of the member are studied for the reinforced concrete T beam. In addition, auxiliary flexural strengthening effects by U-type fiber sheets bonded on bottom and side faces of the member to prevent delamination of the bottom fiber sheet are theoretically investigated. The analytical solutions are compared with experimental results of several references to verify the proposed approach. It is shown that the good agreements between the predicted results and experimental data are obtained.

Investigation of Compressive Strength and Foaming Characteristics of Acid Anhydride Epoxy Foam by Foaming Agent (발포제에 따른 산무수물계 에폭시 폼의 압축강도 및 포밍특성 분석)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Sung-Min;Kwon, Il-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.133-138
    • /
    • 2018
  • Polymer foams were used to fill the void in the structure in addition to flame retardant and heat insulation. Polymer foams such as polyurethane, polyisocyanurate, poly(vinyl chloride), polyethylene terephthalate were used to weight lighting materials. In this study, epoxy foam was used to improve mechanical properties of polymer foam. Acid anhydride type hardener reacts with polyol. Using this phenomenon, if blowing agent was added into epoxy resin using acid anhydride type hardener, formation and compressive properties of epoxy foam was studied. Formation of polymer foam was compared with type of blowing agent and concentration of blowing agent via compressive test. As these results, optimized condition of epoxy foam was found and epoxy foam had better compressive property than other polymer foam.

Selective Chemical Dealloying for Fabrication of Surface Porous Al88Cu6Si6 Eutectic Alloy (화학적 침출법을 통한 표면 다공성 Al-Cu-Si 공정 합금 제조)

  • Lee, Joonhak;Kim, Jungtae;Im, Soohyun;Park, Hyejin;Shin, Hojung;Park, Kyuhyun;Qian, M.;Kim, Kibeum
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • Al-based alloys have recently attracted considerable interest as structural materials and light weight materials due to their excellent physical and mechanical properties. For the investigation of the potential of Al-based alloys, a surface porous $Al_{88}Cu_6Si_6$ eutectic alloy has been fabricated through a chemical leaching process. The formation and microstructure of the surface porous $Al_{88}Cu_6Si_6$ eutectic alloy have been investigated using X-ray diffraction and scanning electron microscopy. The $Al_{88}Cu_6Si_6$ eutectic alloy is composed of an ${\alpha}$-Al dendrite phase and a single eutectic phase of $Al_2Cu$ and ${\alpha}$-Al. We intended to remove only the ${\alpha}$-Al phase and then the $Al_2Cu$ phase would form a porous structure on the surface with open pores. Both acidic and alkaline aqueous chemical solutions were used with various concentrations to modify the influence on the microstructure and the overall chemical reaction was carried out for 24 hr. A homogeneous open porous structure on the surface was revealed via selective chemical leaching with a $H_2SO_4$ solution. Only the ${\alpha}$-Al phase was successfully leached while the morphology of the $Al_2Cu$ phase was maintained. The pore size was in a range of $1{\sim}5{\mu}m$ and the dealloying depth was nearly $3{\mu}m$. However, under an alkaline NaOH, aqueous solution, an inhomogeneous porous structure on the surface was formed with a 5 wt% NaOH solution and the morphology of the $Al_2Cu$ phase was not preserved. In addition, the sample that was leached by using a 7 wt% NaOH solution crumbled. Al extracted from the Al2Cu phase as ${\alpha}$-Al phase was dealloyed, and increasing concentration of NaOH strongly influenced the morphology of the $Al_2Cu$ phase and sample statement.

Evaluation of flexural performance of high performance fiber reinforced cementitious composites according to fiber shape, aspect ratio and volume fraction (강섬유의 형상, 길이 및 혼입율에 따른 고성능 섬유보강 시멘트 복합체의 휨 특성 평가)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Jang-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.697-704
    • /
    • 2017
  • High-Performance Fiber-Reinforced Cement Composites (HPFRCC) has outstanding durability, and has attracted interest because of its ductility and development of strength, which allows a reduction of the self-weight of a structural member by substantially decreasing the cross section. Therefore, the present study aimed to improve the economic efficiency of HPFRCC by examining experimentally the flexural performance considering various characteristics of the steel fiber. To find an efficient fiber reinforcement method, the flexural performance was evaluated for different shapes, aspect ratios, and volume ratios of the steel fiber. Straight, hooked, and twisted fiber configurations were considered by adopting a fiber length longer than the usual 13 mm. The test results showed that HPFRCC reinforced by 19.5 nun-long straight fibers with a volume fraction of 1.5% shows better flexural performance than that reinforced by 13 mm-long straight fibers with a volume fraction of 2.0%. Consequently, HPFRCC with enhanced economic efficiency can be produced by adopting a reduced amount of steel fiber.

A study on excavator front support parts to minimize springback defects (굴삭기 Front Support 부품 뒤틀림 결함 최소화 방안 도출)

  • Jeon, Yong-Jun;Heo, Young-Moo;Lee, Ha-Sung;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.40-45
    • /
    • 2018
  • Recently, in construction equipment machinery production, development has focused on environmentally-friendly functions to improve existing production capacity. For excavators as well, emphasis has been placed on response to environmental regulations, miniaturization, and noise reduction, while technology is being developed considering cost reduction and safety.Accordingly, the front support, an inner reinforcement part of the excavator, as well as high-strength steel plates to improve safety and reduce weight, are being applied.However, in the case of high-strength materials, Springback occurs in the final formed part due to high residual stress during product forming. Derivation of a forming or product shaping process to reduce springback is needed. Accordingly, regarding the front support, an inner reinforcement part of the excavator, this study derived a method to improve springback and secure shape stiffness through analysis of the springback occurrence rate and springback causes through a forming analysis.As for the results of analyzing the springback occurrence rate of existing products through forming analysis, springback of -22.6 mm < z < 27.35 mm occurred on the z-axis, and it was confirmed that springback occurred due to the stiffness reinforcing bead of the upper and middle parts of the product.To control product residual stress and springback, we confirmed a tendency of springback reduction through local pre-cutting and stiffness reinforcement bead relocation.In the local pre-cutting model, springback was slightly reduced by 5.3% compared with the existing model, an insignificant reduction effect. In the stiffness reinforcement bead relocation model, when an X-shaped stiffness reinforcement bead was added to each corner portion of the product, springback was reduced by at least 80%.The X-shaped bead addition model was selected as the springback reduction model, and the level of stiffness compared to the existing model was confirmed through a structural analysis.The X-shaped bead additional model showed a stress springback of 90% and springback reduction of 7.4% compared with the existing model, indicating that springback and stiffness will be reinforced.

Enhanced Production of Astaxanthin by Metabolic Engineered Isoprenoid Pathway in Escherichia coli (대장균에서 이소프레노이드 생합성 경로의 대사공학적 개량에 의한 아스타잔틴의 생산성 향상)

  • Lee, Jae-Hyung;Seo, Yong-Bae;Kim, Young-Tae
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1764-1770
    • /
    • 2008
  • The goal of this study is to increase production of astaxanthin in recombinant Escherichia coli by engineered isoprenoid pathway. We have previously reported structural and functional analysis of the astaxanthin biosynthesis genes from a marine bacterium, Paracoccus haeundaensis. The carotenoid biosynthesis gene cluster involved in astaxanthin production contained six carotenogenic genes (crtW, crtZ, crtY, crtI, crtB, and crtE genes) and recombinant E. coli harboring six carotenogenic genes from P. haeundaensis produced 400 ${\mu}g$/g dry cell weight (DCW) of astaxanthin. In order to increase production of astaxanthin in recombinant E. coli, we have cloned 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (lytB), farnesyl diphosphate (FPP) synthase (ispA), and isopentenyl (IPP) diphossphate isomerase (idi) in the isoprenoid pathway from E. coli and coexpressed these genes in recombinant E. coli harboring the astaxanthin biosynthesis genes. This engineered E. coli strain containing both isoprenoid pathway gene and astaxanthin biosynthesis gene cluster produced 1,200 ${\mu}g$/g DCW of astaxanthin, resulting 3-fold increased production of astaxanthin.