• Title/Summary/Keyword: Structural Variation

Search Result 1,621, Processing Time 0.026 seconds

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

A Stress Analysis of the Cast Iron Insert of Spent Nuclear Fuel Disposal Canister with the Underground Water Pressure Variation in a Deep Repository (지하수압 변화에 따른 심지층 핵폐기물 처분용기 내부 주철 구조물의 응력해석)

  • 강신욱;권영주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.77-84
    • /
    • 2000
  • In this paper, the stress analysis of the cast iron insert of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressue of underground water, swelling pressure of bentonite, sudden rock movement etc.. Hence, the canister should be designed to withstand these loads. The cast iron insert of the canister mainly supports these loads. Therefore, the stress analysis of the cast iron insert is done to determine the design variables such as the diameter versus length of canister and the number and array type of inner baskets in this paper, The linear static structural analysis is done using the finite element analysis method. And the finite element analysis code, NISA, is used for the computation.

  • PDF

Time Dependent Analysis Considering the Construction Sequences in Bridges of Movable Scaffolding System (MSS) (시공단계를 고려한 MSS 공법 교량의 시간의존적 거동해석)

  • Kwak Hyo-Gyoung;Son Je-Kuk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.167-174
    • /
    • 2005
  • Through time-dependent analyses of RC bridges constructed by a movable scaffolding system (MSS) considering the construction sequence and creep deformation of concrete, structural responses related to the member forces are reviewed. On the basis of the compatibility condition and equilibrium equation at every construction stage, basic equations that can describe the moment variation with time in movable scaffolding construction are derived. By using the introduced relations, the design moment and its variation over time can easily be obtained with only the elastic analysis results and without additional time-dependent analyses considering the construction sequences. In addition, the design moments determined by the introduced equations are compared with the results from a rigorous numerical analysis with the objective of establishing the relative efficiencies of the introduced equations.

  • PDF

Luminescence properties of ZnO thin films depending on the variation of the film thickness (ZnO 박막의 두께변화에 따른 광학적 특성변화 연구)

  • 심은섭;강홍성;강정석;김종훈;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.135-138
    • /
    • 2001
  • We report the structural ,optical and electrical properties of ZnO thin films depending on the variation of the film thickness. The properties of the films deposited on sapphire (001) substrates using a pulsed laser deposition technique (PLD) were characterized with XRD, hall measurement and photoluminescence (PL). In our study, the increase of the thickness of ZnO thin films shows the improvement of the structural and optical properties. The electric properties of the films were also well matched with the structural and optical properties

  • PDF

Response Variability of Reinforced Concrete Frame by the Stochastic Finite Element Method (확률유한요소법에 의한 철근 콘크리트 프레임의 응답변화도)

  • 정영수
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.125-134
    • /
    • 1994
  • Response variability of reinforced concrete frame subjected to material property randomness has been evaluated with the aid of the finite element method. The spatial variation of Young's modulus is assumed to be a two-dimensional homogeneous stochastic process. Young's Modulus of concrete material has been investigated based on the uiaxial strength of concrete cylinder. Direct Monte Carlo simulation method is used to investigate the response of reinforced concrete frame due to the variation of Young's modulus with the Neumann expansion method and the pertubation method. The results by three analytic methods are compared with those by deterministic finite element analysis. These stochastic technique may be an efficient tool for evaluating the structural safety and reliability of reinforced concrete structures.

  • PDF

Subsonic Flutter Characteristics of a Sandwich Structure Wing with Honeycomb core (하니콤 코어 샌드위치 구조 날개의 아음속 플러터 특성)

  • Kim, Yu-Sung;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.17-26
    • /
    • 2006
  • The flutter characteristics of all movable tail wing with honeycomb sandwich structure have been studied in this study. The present wing model has a airfoil cross section and the linear variation of spanwise thickness. Structural vibration analysis is performed based on the finite element method using sandwich and beam elements. Unsteady aerodynamic technique used on the doublet lattice method has been effectively used to conduct the frequency-domain flutter analyses. The parametric flutter studies have been performed for various structural design parameters. Computational results on flutter stability due to the variation of structural parameters are presented and its related characteristics are investigated through the comparison of results.

  • PDF

Effects of Seismic Isolated Frequency in Structural Responses of Cylindrical Tanks (면진주파수가 원통형탱크의 구조응답에 미치는 영향)

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Yoo, Bong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.258-265
    • /
    • 1995
  • For design of seismic isolated system the determination of isolated frequency is very important. In this paper the effects of seismic isolated frequency for cylindrical tank are investigated using the 1940 EL Centre earthquake(NS). From the results of analysis the seismic isolated frequencies significantly depend on input acceleration and displacement components in lower frequency regions. Therefore, the seismic isolated frequency should be determined by consideration of input ground motion characteristics. For the seismic analysis the modified hysteretic hi-linear model of seismic isolators which can consider the yield load variation, shape of hysterisis loop variation and hardening effects of isolators is proposed. The analyses using the proposed model give similar displacement responses but higher maximum acceleration responses than those using the simple hysteretic hi-linear model.

  • PDF

A Study on the Recycling of Coal Ash as Structural Backfill materials (구조물 뒷채움재로서의 석탄회 활용에 관한 연구)

  • 여유현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.74-79
    • /
    • 2000
  • The purpose of this paper is to recycle coal ash as structural backfill materials from electric power plants. Two million tons of coal ash are produced annually. The laboratory test was executed for the basic compatibility as substitution for structural backfill materials and the optimal mixture ratio(fly ash : bottom ash) was decided. In addition the model test was performed using medium scale earth pressure model with small size earth pressure cells model box data logger and some other apparatuses. Mixed coal ash and excellent backfill materials(coheisonless soil SW) were compared in the view of lateral earth pressure variation depending on wall displacement. The reduction of earth pressure when coal ash was used as a bockfill material was monitored comparing to that of cohesionless soil. the cost and environmental pollutants by treating coal ash can be reduced through developing the recycling technology.

  • PDF

A generalized algorithm for the study of bilinear vibrations of cracked structures

  • Luo, Tzuo-Liang;Wu, James Shih-Shyn;Hung, Jui-Pin
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • Structural cracks may cause variations in structural stiffness and thus produce bilinear vibrations to structures. This study examines the dynamic behavior of structures with breathing cracks. A generalized algorithm based on the finite element method and bilinear theory was developed to study the influence of a breathing crack on the vibration characteristic. All the formulae derived in the time domain were applied to estimate the period of the overall bilinear motion cycle, and the contact effect was considered in the calculations by introducing the penetration of the crack surface. Changes in the dynamic characteristics of cracked structures are investigated by assessing the variation of natural frequencies under different crack status in either the open or closed modes. Results in estimation with vibrational behavior variation are significant compared with the experimental results available in the literature as well as other numerical calculations.

An improvement on fuzzy seismic fragility analysis using gene expression programming

  • Ebrahimi, Elaheh;Abdollahzadeh, Gholamreza;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.577-591
    • /
    • 2022
  • This paper develops a comparatively time-efficient methodology for performing seismic fragility analysis of the reinforced concrete (RC) buildings in the presence of uncertainty sources. It aims to appraise the effectiveness of any variation in the material's mechanical properties as epistemic uncertainty, and the record-to-record variation as aleatory uncertainty in structural response. In this respect, the fuzzy set theory, a well-known 𝛼-cut approach, and the Genetic Algorithm (GA) assess the median of collapse fragility curves as a fuzzy response. GA is requisite for searching the maxima and minima of the objective function (median fragility herein) in each membership degree, 𝛼. As this is a complicated and time-consuming process, the authors propose utilizing the Gene Expression Programming-based (GEP-based) equation for reducing the computational analysis time of the case study building significantly. The results indicate that the proposed structural analysis algorithm on the derived GEP model is able to compute the fuzzy median fragility about 33.3% faster, with errors less than 1%.