• Title/Summary/Keyword: Structural Strength Test at Room Temperature

Search Result 23, Processing Time 0.032 seconds

An experimental and numerical analysis of concrete walls exposed to fire

  • Baghdadi, Mohamed;Dimia, Mohamed S.;Guenfoud, Mohamed;Bouchair, Abdelhamid
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.819-830
    • /
    • 2021
  • To evaluate the performance of concrete load bearing walls in a structure under horizontal loads after being exposed to real fire, two steps were followed. In the first step, an experimental study was performed on the thermo-mechanical properties of concrete after heating to temperatures of 200-1000℃ with the purpose of determining the residual mechanical properties after cooling. The temperature was increased in line with natural fire curve in an electric furnace. The peak temperature was maintained for a period of 1.5 hour and then allowed to cool gradually in air at room temperature. All specimens were made from calcareous aggregate to be used for determining the residual properties: compressive strength, static and dynamic elasticity modulus by means of UPV test, including the mass loss. The concrete residual compressive strength and elastic modulus values were compared with those calculated from Eurocode and other analytical models from other studies, and were found to be satisfactory. In the second step, experimental analysis results were then implemented into structural numerical analysis to predict the post-fire load-bearing capacity response of the walls under vertical and horizontal loads. The parameters considered in this analysis were the effective height, the thickness of the wall, various support conditions and the residual strength of concrete. The results indicate that fire damage does not significantly affect the lateral capacity and stiffness of reinforced walls for temperature fires up to 400℃.

The Bending Strength and Adhesive Properties of PRF and MUF Glulam (PRF, MUF 집성재의 휨 강도와 접착 성능 평가)

  • Park Jun-Chul;Kim Keon-Ho;Hong Soon-Il
    • Journal of the Korea Furniture Society
    • /
    • v.15 no.2
    • /
    • pp.19-27
    • /
    • 2004
  • As glulam is a woody material, it is necessary to be more careful in a gluing process. It takes 6-7 hours at $40-60^{\circ}C$ to harden PRF resin used in making structural glulam, and about 24 hours at room temperature. In the present process which can not use a press continuously, reducing the hardening time is necessary to increase production. The experiment was done to compare the adhesive properties of PRF resin and MUF resin through bending test, block shear strength test and water soaking test. In comparing the bending strength of prediction MOE is 1.2 times higher that actual MOE. PRF and MUF do not show significant difference in MOE and MOR, and in block shear strength test, such as shear strength and wood failure rate. However, in water soaking and boiling water soaking tests PRF and MUF show the significant difference in delamination rate.

  • PDF

Evaluation of Residual Bond Stress between Carbon-fiber Reinforced Polymer and Steel Rebar Using Ultra-High-Performance-Concrete after Elevated Temperature (초고강도 콘크리트를 활용한 고온가열 이후의 탄소 보강근과 철근의 잔류 부착성능 평가)

  • Yoo, Sun-Jae;Lee, Ho-Jin;Yuan, Tian-Feng;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.169-176
    • /
    • 2021
  • In this study, pull-out tests were conducted at room temperature, 150 ℃ and 250 ℃ to evaluate the residual bond strength of carbon fiber reinforcement polymer, CFRP after elevated temperature and deformed steel rebar of D10 and D13 were also evaluated after the high temperature heating for comparison. As a result of the experiment, the bond strength of the CFRP after 150 ℃ and 250 ℃ decreased by 9.94 % and 41 %, respectively. On the other hand, after thermal heating, both the steel rebar of D10 and D13 had a lower rate of reduction in bond strength than that of the CFRP. Also slip at the maximum bond strength also decreased after the heating for both the CFRP and the rebars. Through it, the correlation between the bond strength and the slip reduction due to thermal heating was confirmed and bond slip models were presented. Finally the experimental result was evaluated as relative bond strength to identify the residual bond performance of the CFRP and the rebar after the heating was confirmed by comparing with the existing test result of the bond strength after elevated temperature.

The Effect of Strain Rate on Texure Formation Behaviors in AZ80 Magnesium Alloy (고온변형 중의 AZ80 마그네슘합금의 집합조직 형성거동에 영향을 미치는 변형속도의 영향)

  • Bae, Sangdae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.296-302
    • /
    • 2020
  • Magnesium alloys have been rapidly attracting as lightweight structural material in various industry fields because of having high specific strength and low density. It is well known that the crystallographic texture plays an important role in improvement of poor room temperature ductility of magnesium alloys. In this study, high-temperature plane strain compression deformation was conducted on extruded AZ80 magnesium alloy at 723K by varying the strain rates ranging from 5.0×10-3s-1 to 5.0×10-2s-1 in order to investigate the behaviors of texture formation. It was found that texture formation behaviors in three kinds of specimens were affected by continuous and discontiuous deformation mechanism.

Effects of the structural strength of fire protection insulation systems in offshore installations

  • Park, Dae Kyeom;Kim, Jeong Hwan;Park, Jun Seok;Ha, Yeon Chul;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.493-510
    • /
    • 2021
  • Mineral wool is an insulation material commonly used in passive fire protection (PFP) systems on offshore installations. Insulation materials have only been considered functional materials for thermal analysis in the conventional offshore PFP system design method. Hence, the structural performance of insulation has yet to be considered in the design of PFP systems. However, the structural elements of offshore PFP systems are often designed with excessive dimensions to satisfy structural requirements under external loads such as wind, fire and explosive pressure. To verify the structural contribution of insulation material, it was considered a structural material in this study. A series of material tensile tests was undertaken with two types of mineral wool at room temperature and at elevated temperatures for fire conditions. The mechanical properties were then verified with modified methods, and a database was constructed for application in a series of nonlinear structural and thermal finite-element analyses of an offshore bulkhead-type PFP system. Numerical analyses were performed with a conventional model without insulation and with a new suggested model with insulation. These analyses showed the structural contribution of the insulation in the structural behaviour of the PFP panel. The results suggest the need to consider the structural strength of the insulation material in PFP systems during the structural design step for offshore installations.

The Strain Evaluation of the Notch tip Area for the CFRP/GFRP Hybrid Laminate Plate using the SENT Specimen (SENT시험편을 이용한 CFRP/GFRP 하이브리드 적층재의 노치선단부 변형률 평가)

  • Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.15-21
    • /
    • 2014
  • The aim of this work is conduct the study on light weight and structural performance improvement of the composite wind power blade. GFRP (Glass Fiber Reinforced Plastic) pre-empted by CFRP(Carbon Fiber Reinforced Plastic), the major material of wind power blade, was identified the superiority of mechanical performance through the tensile and fatigue test. SENT(Single Edge Notched Tension) specimen fracture test was conducted on the specimen that laminated together 2 ply CFRP with 4 ply GFRP through DIC(Digital Image Correlation) analysis. The SENT specimen thickness and $a_0/W$ ratio is 1.45 mm and 0.2, respectively. The fracture test accomplished with displacement control with 0.1 mm/min at the room temperature. The experimental apparatus used for the fracture test consisted of a 50kN universal dynamic tester and CCD camera connected to a personal computer (PC), which was used to record images of the specimen surface. Following data acquisition, the images and load-displacements were transferred to the PC, on which the DIC software was implement. The experiment and DIC analysis results show that CFRP/GFRP laminated composite exhibits improvement of the strength, compared with that of the existing blade material. This study shows the result that the strength of CFRP rotor blade of wind turbine satisfies through the experimental and DIC method.

Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies (냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가)

  • Kwon, I.W.;Seo, Y.H.;Jung, K.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

Structural glass panels: An integrated system

  • Bidini, G.;Barelli, L.;Buratti, C.;Castori, G.;Belloni, E.;Merli, F.;Speranzini, E.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.327-332
    • /
    • 2022
  • In building envelope, transparent components play an important role. The structural glazing systems are the weak element of the casing in terms of mechanical resistance, thermal and acoustic insulation. In the present work, new structural glass panels with granular aerogel in interspace were investigated from different points of view. In particular, the mechanical characterization was carried out in order to assess the resistance to bending of the single glazing pane. To this end, a special instrument system was built to define an alternative configuration of the coaxial double ring test, able to predict the fracture strength of glass large samples (400 × 400 mm) without overpressure. The thermal and lighting performance of an innovative double-glazing façade with granular aerogel was evaluated. An experimental campaign at pilot scale was developed: it is composed of two boxes of about 1.60 × 2 m2 and 2 m high together with an external weather station. The rooms, identical in terms of size, construction materials, and orientation, are equipped with a two-wing window in the south wall surface: the first one has a standard glazing solution (double glazing with air in interspace), the second room is equipped with the innovative double-glazing system with aerogel. The indoor mean air temperature and the surface temperature of the glass panes were monitored together with the illuminance data for the lighting characterization. Finally, a brief energy characterization of the performance of the material was carried out by means of dynamic simulation models when the proposed solution is applied to real case studies.

Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8

  • Brnic, Josip;Brcic, Marino;Krscanski, Sanjin;Lanc, Domagoj;Chen, Sijie
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.409-417
    • /
    • 2019
  • The choice of individual material for industrial application is primarily based on knowledge of its behavior in similar applications and similar environmental conditions. Contemporary design implies knowledge of material behavior and knowledge in the area of structural analysis supported by large capacity computers. Bearing this in mind, this paper presents and analyzes the experimental results related to the mechanical properties of the material considered (30CrNiMo8/1.6580/AISI 4340) at different temperatures as well as its creep and fatigue behavior. All experimental tests were carried out as uniaxial tests. The test results related to the mechanical properties are presented in the form of engineering stress-strain diagrams. The results related to the creep behavior of the material are shown in the form of creep curves, while the fatigue of the material is shown in the form of stress - life (S - N) diagram. Based on these experimental results, the values of the following properties are determined: ultimate tensile strength (${\sigma}_{m,20}=696MPa$), yield strength (${\sigma}_{0.2,20}=355.5MPa$), modulus of elasticity ($E_{,20}=217GPa$) and fatigue limit (${\sigma}_{f,20,R=-1}=280.4MPa$). Results related to fatigue tests were obtained at room temperature and stress ratio R = -1.

Evaluation of Adhesion Performance of High-Fireproofing Alumino-silicate Inorganic Mortar (알루미노 실리케이트계 고내화성 모르타르의 부착성능 평가)

  • Cho, Hyeon-Seo;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.569-576
    • /
    • 2018
  • In modern society, a huge number of the buildings have been constructed with RC structure. RC structures have many structural instabilities due to earthquake, typhoon, construction fault, design phase errors. Therefore, many reinforcement methods are being implemented to solve this problem. In the reinforcement method, the organic epoxy adhesive used in the FRP reinforcing method is abruptly damaged when exposed to high temperature, which is directly connected to the fall of the reinforcing material. Therefore, the present study was conducted to develop inorganic refractory mortar with a certain level of adhesion ability to reduce the heat transferred to FRP reinforcement when exposed to high temperatures. As a result of the test, it showed high adhesion strength at room temperature condition with the inclusion of EVA resin, and showed no performance deterioration up to about $300^{\circ}C$ even under heating conditions. Also, it was confirmed that the backside temperature was lower as the thickness increased, and converged to a constant temperature of about $780^{\circ}C$ after 2 hours of heating.