• Title/Summary/Keyword: Structural Static Test

Search Result 624, Processing Time 0.029 seconds

Evaluation of Bridge Load Carrying Capacity of PSC Girder Bridge using Pseudo-Static Load Test (의사정적재하시험을 이용한 PSC 거더교의 공용 내하력평가)

  • Yoon, Sang-Gwi;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.53-60
    • /
    • 2019
  • In this study, a method for updating the finite element model of bridges with genetic algorithm using static displacement were presented, and verified this method using field test data for PSC girder bridge. As a field test, static load test and pseudo-static load test were conducted, and updated the finite element model of test bridge using each test data. Finally, evaluated the bridge load carrying capacity with updated model using pseudo-static load test's displacement data. To evaluate the bridge load carrying capacity, KHBDC-LSD, KHBDC and AASHTO LRFD's live load model were used, and compared the each results.

A Study on the Structural Strength of the Rolling Stock Seat Frame (철도차량 시트프레임의 강도 평가 연구)

  • 구정서;조현직
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.130-138
    • /
    • 2004
  • In this paper, the structural strength of a rolling stock seat were numerically evaluated under several design load conditions based on the UIC requirements. The rot]ins stock seat was designed for the high speed train of a Chinese conventional line. To maximize its weight reduction and structural strength, an aluminium alloy, ALDC8-T5, was applied to the base frame, side frames and armrests. The designed seat frame satisfied the strength requirements on inertia loads and fatigue test conditions. However, it couldn't satisfy the requirements on the static test conditions of UIC 566 OR. Therefore, some design modifications were suggested and numerically evaluated whether the static test requirements could be satisfied or not.

An Experimental Study on the Structure Behavior of H & Channel-Type Lining Board (H형 복공판과 Channel형 복공판의 구조거동에 관한 연구)

  • Lee, Seung-Soo;Kim, Doo-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.119-126
    • /
    • 2005
  • The objective of this paper is to investigate the lining board's capacity for the static load. The test is to inspect the possibility of retrofit and efficiency, which is required to upgrade the structure's capacity and to examine the effects of the improvements of specimen by using structural analysis, and static loading test, respectively. As the result of static loading test for measured stresses and deflections. H type lining board take sufficient load carrying capacity and high stiffness which likes ultimate load, displacement, and bending stresses of intermediate span and top, bottom flange more than 3 times channel type lining board.

An Empirical Study on the Quality Reliability of the Split Shape of Long Control Rod for the Rotorcraft (회전익 항공기 장축 조종로드 분할 형상의 품질 신뢰성에 관한 실증적 연구)

  • Lim, HG;Kim, MT;Choi, JH;Kim, DH;Jang, MW;Yoon, JH
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.365-377
    • /
    • 2017
  • Purpose: In the A rotorcraft, the division of a long yaw control rod was studied to improve the heat treatment capability. The purpose of this study was to analyze whether division of yaw control rod affects quality reliability in the A rotorcraft and analyze whether it secured flight safety. Methods: The structural static test and the vibration durability test on the split shape of yaw control rod were carried out in order to examine and verify the existing structural analysis results. Results: Structural static test results showed that there were no cracks and vibration durability test results showed that there was no damage or breakage on the split yaw control rod. Conclusion: This study showed that the quality reliability was confirmed and thus the flight safety of the A rotorcraft was secured. And it is expected that the split technique of the yaw control rod will contribute to the development of the rotorcraft industry in the future.

Structural Performance Analysis of New Type CFTA Girder Bridge (신형식 CFTA 거더 교량의 구조성능평가)

  • Lee, Ji-O;Jeong, Min-Chul;Park, Kyung-Hoon;Kong, Jung-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • In this research, static load test is performed to verify the arch effect and structural performance of CFTA(Concrete-Filled and Tied steel tubular Arch) girder, and FE(Finite Element) analysis is performed to investigate validity of the test result. CFTA girder is designed to maximize the benefit of each material, such as steel plate, filled concrete and PS tendon. Static load test is performed based on the frame-analysis result of 12m sample miniature model. The result of static load test is that structural performance and safety of CFTA girder are confirmed and there is different deflection mode with other structural form result from arch effect. FE analysis with ABAQUS is also performed to show the validity of the truck collision safety and static load test.

Structural Static Test of Pylon for External Attachment Separation Load (외부장착물 분리하중에 대한 파일런 구조 정적시험)

  • Kim, Hyun-gi;Kim, Sungchan;Hong, Seung-ho;Choi, Hyun-kyung;Cho, Sang-hwan;Park, Hyung-bae
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.104-109
    • /
    • 2022
  • The bomb rack unit (BRU) installed inside the pylon serves to fix external attachments such as external fuel tank or external weapon, and also serves to separate external attachments in case of emergency. In particular, the load generated when the external attachment is separated from the BRU is called the punching load. In this study, we present the results of a structural static test performed to verify the structural integrity of the pylon under the BRU punching condition acting on it. In the structural static test report, we present the implementation method for the separation load of the external attachment and the test profile for the BRU punching load condition, and compared the error between the load input signal and the feed-back signal to determine the appropriateness of load control in each test. Furthermore, we compared the strain results obtained in the numerical analysis and structural test at the main positions of the specimen. As a result, it was shown that the load of the actuators were properly controlled within the allowable error range in each test, and the numerical analysis effectively predicted the test result. Finally, through structural static tests conducted by design limit load and design ultimate load, we verified that the aircraft pylon dealt with in this study has sufficient structural strength for external attachment separation condition.

The Static Structural Design and Test of High Speed Propeller Blade (고속 프로펠러 블레이드 정적 구조 설계 및 시험)

  • Park, Hyun-Bum;Choi, Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2014
  • The recent high speed propeller with blade sweep is required to have high strength to get the thrust to fly at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

A Study on the Shear Strength Properties of Reinforced Concrete Beams according to Shear Span-Depth Ratio (전단지간비에 따른 철근콘크리트 보의 전단강도특성에 관한 연구)

  • Park, Jong-Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.93-100
    • /
    • 2000
  • The purpose of this study is to investigate the shear behavior of reinforced concrete beams according to small shear span-depth ratio between a/d=1.5, 2.8, 3.6. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete the longitudinal steel ratio, the shear span-depth ratio and shear reinforcement. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The test results on shear strength were compared with results obtained by the formulas of ACI code 318-95. The shear strength of reinforced concrete beams exceeded those predicted following present ACI code 318-95(11-6).

  • PDF

Static Load Test for Verification of Structural Robustness of Composite Oxidant Tank for Space Launch Vehicle (우주발사체용 복합재 산화제탱크 구조 강건성 검증을 위한 정하중 시험)

  • Kim, Hyun-gi;Kim, Sungchan
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.98-105
    • /
    • 2021
  • This study presented the results of the static load tests conducted to verify the structural robustness of the composite oxidant tank for a space launch vehicle. First, we introduced the test equipment used in the static load test of the composite oxidant tank, and then described the test requirements that the composite oxidant tank must satisfy. In addition, we presented a test set-up diagram consisting of the static load test fixture, hydraulic pressure, control equipment, and data acquisition equipment, and the load profile of the static load test of the composite oxidant tank consisting of shear, equivalent compression, bending, and combination tests. As a result of load control, we verified the reliability of this test by showing the errors between the input load and the feedback load in each channel according to the increase of the test load, and the feedback error between the channel A and channel B of load cell in each load actuator. As a result of the static load test, the load of the actuator was properly controlled within the allowable error range in each test, and we found that the test specimen did not cause damage or buckling that causes significant structural defects in the required load.

Dynamic and static structural displacement measurement using backscattering DC coupled radar

  • Guan, Shanyue;Rice, Jennifer A.;Li, Changzhi;Li, Yiran;Wang, Guochao
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.521-535
    • /
    • 2015
  • Vibration-based monitoring is one approach used to perform structural condition assessment. By measuring structural response, such as displacement, dynamic characteristics of a structure may be estimated. Often, the primary dynamic responses in civil structures are below 5 Hz, making accurate low frequency measurement critical for successful dynamic characterization. In addition, static deflection measurements are useful for structural capacity and load rating assessments. This paper presents a DC coupled continuous wave radar to accurately detect both dynamic and static displacement. This low-cost radar sensor provides displacement measurements within a compact, wireless unit appropriate for a range of structural monitoring applications. The hardware components and operating mechanism of the radar are introduced and a series of laboratory experiments are presented to assess the performance characteristics of the radar. The laboratory and field experiments investigate the effect of factors such as target distance, motion amplitude, and motion frequency on the radar's measurement accuracy. The results demonstrate that the radar is capable of both static and dynamic displacement measurements with sub-millimeter accuracy, making it a promising technology for structural health monitoring.