• Title/Summary/Keyword: Structural Safety

Search Result 4,360, Processing Time 0.026 seconds

Structural Capacity Evaluation of System Scaffolding using X-Type Advanced Guardrail (교차가새형 선행 안전난간을 적용한 시스템비계의 구조 성능 평가)

  • Park, J.D.;Lee, H.S.;Shin, W.S.;Kwon, Y.J.;Park, S.E.;Yang, S.S.;Jung, K.
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.49-58
    • /
    • 2020
  • In domestic construction sites, when installing steel pipe scaffolding and system scaffolding, the guardrails are installed after the installation of the work platforms. This conventional guardrail system (CGS) is always exposed to the risk of falls because the safety railing is installed later. In order to prevent fall disasters during erecting and dismantling scaffolds, it is necessary to introduce the advanced guardrail system (AGS) which installs railings in advance of climbing onto a work platform. For the introduction of the AGS, the structural performance of the system scaffolding applying the CGS and the AGS was compared and evaluated. The structural analysis of the system scaffold (height: 31 m and width: 27.4 m) with AGS confirmed that structural safety was ensured because the maximum stress of each element of the system scaffolding satisfies the allowable stress of each element. As a result of performance comparison of CGS and AGS for each element, the combined stress ratio of vertical posts in AGS was 6.4% lower than that of CGS. In addition, in the case of ledger and transom, the combined stress ratios of AGS and CGS were almost the same. The compression test of the assembled system scaffolding (three-storied, 1 bay) showed that the AGS had better performance than the CGS by 9.7% (8.91 kN). The cross bracing exceeds the limit on slenderness ratio of codes for structural steel design. But the safety factor for the compressive load of the cross bracing was evaluated as meeting the design criteria by securing 3 or more. In actual experiments, it was confirmed that brace buckling did not occur even though the overall scaffold was buckled. Therefore, in the case of temporary structures, it was proposed to revise the standards for limiting on slenderness ratio of secondary or auxiliary elements to recommendations. This study can be used as basic data for the introduction of AGS for installing guardrails in advance at domestic construction sites.

Safety Assessment of Reinforced Concrete Members by Expected Total Cost Minimization (총기대비용최소화에 의한 R.C부재의 안전도 평가)

  • 이증빈;손용우;박주원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.152-159
    • /
    • 1994
  • One of the main objectives of the study is to propose a pratical and realistic reliability analysis by ETCM(Expected Total Cost Minimization). This study is intended to propose the safety assesment and capacity rating of existing reinforced concrete members by evaluating the safety evaluation index, that is RF(Rating Factor) from the results of the field test and inspection for 5 reinforced concrete bridges. ETCM method is used for the reliability analysis of the proposed models. The proposed reliability model and method are applied the safety assesment and system factors of reinforced concrete members.

  • PDF

Development of Probabilistic Fatality Estimation Code for Railway Tunnel Fire Accidents (철도터널 화재시 승객 생존율 예측을 위한 확률론적 평가코드 개발연구)

  • 곽상록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.445-450
    • /
    • 2004
  • Tunnel fire accident is one of the critical railway accidents, together with collision and derailment. For the safe operation many tunnel design guidelines are proposed but many Korean railway tunnels do not satisfy these guidelines. For the safety improvement, current safety level is estimated in this study. But so many uncertainties in major input parameters make the safety estimation difficult. In this study, probabilistic techniques are applied for the consideration of uncertainties in major input parameters. As results of this study, probabilistic safety estimation code is developed.

  • PDF

Structural Safety of Lightweight Valve Disc by Topology Optimization Design based on Computational Simulation (전산 시뮬레이션 기반의 위상최적설계에 의한 경량 밸브디스크의 구조적 안전성)

  • Kim, Taehyung
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, flow and structural computational analysis were performed to investigate the structural safety of the lightweight butterfly valve disc designed by topology optimization. After flow analysis, as the opening angle increased, the flow coefficient increased non-linearly and showed a gentle slop. When the opening angle was 12 degree, the cavitation could be predicted. After FE analysis, all FE von-Misses stresses of the lightweight disc were smaller than the yield strength of the material, and all FE maximum deformations were also smaller than the conservative deformation of the previous study. Ultimately, it was confirmed that the structural safety of the lightweight valve disc based on computational analysis is effective.

Design Improvement of Front-End Loader for Tractor to Reduce Stress Concentration and Evaluation of Impact Safety (응력집중 저감을 위한 트랙터용 프론트 로더의 설계개선 및 충격 안전성 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.109-119
    • /
    • 2018
  • The purpose of this study is to evaluate the structural safety of the front-end loader for the 90 kW class of agricultural tractors in impact test conditions. Deformation and stress on the loader under the impact test conditions are analyzed using the commercial finite element analysis software ANSYS. In previous research dealing with the initial design of the loader, the maximum stress occurred in the mount and exceeded the yield strength of the material. In this paper, an improved design of the mount of the loader was proposed to reduce the stress concentration in the initial design. The safety of the improved design was verified by performing rigid-body dynamics analysis, transient structural analysis, and static structural analysis under three impact test conditions: a drop and catch test, a corner pull test, a corner push test. It was found that the local stress concentration in the mount that appeared in the initial design was greatly reduced in the improved design, and that the maximum stresses occurred in the three impact test conditions are smaller than the yield strength. It is expected that the design improvement of the mount proposed in this study and the method of analysis may be effectively used to enhance structural safety in the development of new model front loaders in the future.

A Study on Structural Analysis of High-Pressure Pipeline Retainer-Type Ball Valve by Pressure Testing of the Industrial Standard (산업용 표준의 압력시험 방법에 의한 고압 배관용 리테이너형 볼밸브의 구조해석에 관한 연구)

  • Kim, Chul Kyu;Yoon, Joon Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.13-18
    • /
    • 2015
  • This study has been performed to evaluate the safety of the retainer-type ball valve for a high-pressure pipeline to a district heating plant. The retainer-type ball valve is an improved design for conventional ball valves, such as the floating ball valve and the trunnion ball valve. Numerical analysis of the valve design verification has been applied to investigate the safety factor and seat leakage of the DN300 and DN400 sizes. The given condition to solve the structural analysis was based on the international standard for ISO 5208. In this study, the methods for structural analysis are described in detail. The structural analysis results present the deformations, the equivalent stresses, and the safety factors. Through these results, this study successfully demonstrates the safety and seat leakage of the retainer-type ball valve. They also streamline the process of development for valve manufacturing.

Structural Safety of Universal Joint using FEM Simulation (FEM 시뮬레이션을 이용한 유니버설 조인트의 구조안전성)

  • Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • Mechanical components are to be produced with accurate dimensions in order to function properly in assemblies of a machine. Once designs of mechanical components are created, designers examine the designs by adopting many known experimental methods. A primary test method includes stress and strain evaluation of structural parts. In addition, fatigue test and vibration analysis are an important test method for mechanical components. Real experiments at a laboratory are established when products are manufactured. Since design changes should be done before producing the designs in factories, rapid modifications for new designs are required in production industries. FEM simulation is a proper choice for a design evaluation with speed at a detail stage in design process. This research focuses modeling and mechanical simulation of a mechanical component in order to ensure structural safety. In this paper, a universal joint, being used in driving axels of vehicles, is studied as a target component. A design model is created and tested in some ways by using commercial software of FEM. The designed component is being twisted to transmit heavy power and thus, torsional stress should be under strengths of the component's material. The next is fatigue analysis to convince fatigue cycles to be within the endurance limit of the material. Another test is a vibration analysis for rotational components. This research draws final conclusions from these test analyses and recommends whether the designed model is under safety condition in terms of mechanical structure.

Effects of Expansion of Sleeper Span at the Deck End of a Long Continuous Bridge on Train Safety and Track Stability (장대교량 신축부에서 침목간격 확대가 차량의 주행안전성 및 궤도의 구조안정성에 미치는 영향)

  • Yang, Sin-Chu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.620-627
    • /
    • 2015
  • Long continuous bridge deck can become contracted considerably as temperature drops, which can lead to a large expansion of sleeper span at the end of it. Since this huge sleeper span then can cause problems both with safety of train operation and structural stability of tracks, it is necessary to take the issue into consideration systematically in the designing process of the bridge. In this paper, an evaluation process through the analysis of train-track interaction was presented which can basically review the effects of the expansion of sleeper span at the end of long continuous bridge deck on the safety of the train and the structural stability of the track. The analyses of the interaction between the light rail train and tracks were carried out targeting the sleeper span as a main parameter. The safety of train operation and structural stability of tracks in a light rail system due to the expansion of the sleeper span were evaluated by comparing the numerical results with the related criteria.

Safety Assessment and Behavior Control System using Monitoring of Segmental PSC Box Girder Bridges during Construction (세그멘탈 PSC박스거더교량의 시공간 계측모니터링을 통한 확률적 구조안정성 평가 및 제어 시스템)

  • Shin, Jae-Chul;Cho, Hyo-Nam;Park, Kyung-Hoon;Bae, Yong-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 2001
  • In spite of the increasing construction of segmental PSC box girder bridges, the techniques associated with real-time monitoring, construction control and safety assessment during construction have been less developed compared with the construction techniques. Thus, the development of an integrated system including real-time measurement and monitoring, control and safety assessment system during construction is necessary fur more safe and precise construction of the bridges. This study presents a prototype integrated monitoring system for preventing abnormal behavior and accidents under construction stages, that consist of behavior control system for precise construction, reliability-based safety assessment system, and structural analysis. Also, a prototype software system is developed on the basis of the proposed model. It is successfully applied to the Sea-Hae Grand Bridge built by FCM. The integrated system model and software system can be utilized for the safe and precise construction of segmental PSC bridges during construction.

  • PDF

Analysis of 3D Laser Scanner Input Performance in Structual Safety Diagnosis (구조안전진단에서의 3D 레이저 스캐너 투입 성과 분석)

  • Seong, Do-Yun;Baek, In-Soo;Kim, Jea-Jun;Ham, Nam-Hyuk
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.34-44
    • /
    • 2021
  • This study quantitatively analyzes the work performance of the structural safety diagnosis team that diagnoses pipe racks. To this end, a method for evaluating the performance of the structural safety diagnosis team using the queuing model was proposed. For verification, the case of applying the existing method and the method of introducing a 3D laser scanner for one site was used. The period, number of people, and initial investment cost of each project were collected through interviews with case project experts. As a result of analyzing the performance of the structural safety diagnosis team using the queuing model, it was possible to confirm the probability of delay in the work of each project and the amount of delayed work. Through this, the cost (standby cost) when the project was delayed was analyzed. Finally, economic analysis was conducted in consideration of the waiting cost, labor cost, and initial investment cost. The results of this study can be used to decide whether to introduce 3D laser scanners.