• Title/Summary/Keyword: Structural Model Analysis

Search Result 7,570, Processing Time 0.029 seconds

A total strain-based hysteretic material model for reinforced concrete structures: theory and verifications

  • Yun, Gun-Jin;Harmon, Thomas G.;Dyke, Shirley J.;So, Migeum
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.217-241
    • /
    • 2008
  • In this paper, a total strain-based hysteretic material model based on MCFT is proposed for non-linear finite element analysis of reinforced concrete structures. Although many concrete models have been proposed for simulating behavior of structures under cyclic loading conditions, accurate simulations remain challenging due to uncertainties in materials, pitfalls of crude assumptions of existing models, and limited understanding of failure mechanisms. The proposed model is equipped with a fully generalized hysteresis rule and is formulated for 2D plane stress non-linear finite element analysis. The proposed model has been formulated in a tangent stiffness-based finite element scheme so that it can be used for most general finite element analysis packages. Moreover, it eliminates the need to check that tensile stresses can be transmitted across a crack. The tension stiffening model is a function of the bar orientation and any orientation can be accommodated. The proposed model has been verified with a series of experimental results of 2D RC planar panels. This study also demonstrates how parameters of the proposed model associated with cyclic damage modeling influences the pinched cyclic shear behavior.

Structural Analysis on Durability of Forklift due to Opening and Closing Between Forks (개폐에 따른 지게차 포크의 내구성에 대한 구조해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2013
  • Stress and deformation on forklift happened at loading, unloading or moving freight are studied by structural and fatigue analysis in this study. As model 1 as closing type between forks has lower stress and stain than model 2 at opening type, model 1 has more durability than model 2. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'SAE bracket history' with the severest change of load at model 1 and 2, maximum life is shown with Cycle. Minimum damage with 854 at model 2 becomes much higher than model 1. As the gap between forks becomes open, the damage probability becomes higher. The structural result of this study can be effectively utilized with the safe and stable design of forklift by investigating prevention and durability against its damage.

Linear Modeling of Viscoelastic Dampers Considering Nonlinear Dynamic Behavior (점탄성 감쇠기의 비선형거동을 고려한 선형모델 해석)

  • Kim, Jin-Koo;Kwon, Young-Jip;Min, Kyung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.171-177
    • /
    • 2002
  • The viscoelastic dampers are considered to be one of the most efficient means of upgrading existing structures against seismic loads. Generally in the dynamic analysis of a structure with added viscoelastic dampers the internal forces of the dampers are represented by constants that are linearly proportional to displacement and velocity. The purpose of this study is to verify the validity of the linear Kelvin model by comparing the results from the linear analysis with those obtained from the more rigorous nonlinear model such as fractional derivative model. According to the results the structural responses of 1-DOF structure obtained using the linear model are very close to those obtained from nonlinear model. However for multi-D0F structure the difference between the results from both models is enlarged as a results of the assumptions associated with the linear modeling of the viscoelastic dampers.

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.

Structural Analysis Models to Develop Live Load Distribution Factors of Simply Supported Prestressed Concrete I-Girder Bridge (활하중 분배계수식 개발을 위한 I형 프리스트레스트 콘크리트 거더 교량의 구조해석 모델)

  • Lee, Hwan-Woo;Kim, Kwang-Yang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.91-101
    • /
    • 2008
  • Structural analysis models to develop live load distribution factors of simply supported prestressed concrete I-girder bridge should have the precision of the analysis results as well as modeling simplicity. This is due to the numerous frequency of structural analysis needed while developing live load distribution factors. In this study, an appropriate structural analysis model is selected by comparing previous researchs studies and models used in practical design. Also, the influence by the flexural stiffness of barrier and diaphragm on the live load distribution had been analyzed through comparing the numerical analysis and experimental tests. As a result, the model that the eccentric girder and the barrier and diaphragm are connected to the deck plate was appropriate in satisfying both accuracy and simplicity for structural analysis of simply supported prestressed concrete I-girder bridge. However, the barrier was analyzed to have insignificant influence on the live load distribution in spite of its variation of stiffness. The eccentric diaphragm showed little influence at 25% or higher of flexural stiffness. From the results, a model that the girder is rigidly connected to the deck plate in consideration of the eccentricity, the barrier is ignored and the whole section of diaphragm is supposed to be valid without eccentricity is decided as the most appropriate structural model to develop the live load distribution factors of simply supported prestressed concrete I-girder bridge in this study.

A Comparative Study of Factors Influencing Software Piracy : Focused on Different Software User Groups (소프트웨어 사용자 집단에 따른 불법복제 의도에 미치는 요인 비교 연구)

  • Kim, Joong Han
    • Journal of Information Technology Services
    • /
    • v.14 no.2
    • /
    • pp.15-31
    • /
    • 2015
  • Software piracy is widespread throughout the world. It has negative effects on the software industry and the intellectual property market. Despite various deterrent policies, the phenomenon has been getting severe. The current study investigated the antecedents of software piracy attitudes and intention. In order to identify factors and their relationship, a research model for illegal piracy behavior was developed and empirically examined through a path analysis using structural equation model. Also, this study employed a multiple group structural equation model to investigate differences in structural weights across PC software user group and smartphone application user group. It was revealed that perceived benefit, habit, social factor, self-efficacy had positive effect on attitude toward software piracy, whereas perceived risk had a decreasing influence on attitude. Relationships between piracy attitudes and intentions were significant as well. Furthermore, the cross validation between two groups showed the path coefficients of habit to attitude and attitude to intention were significantly different. Implications for research and practice are discussed.

A Study on the Way to Improve Quality of Asset Portfolio Management Using Structural Time-Series Model (구조적 시계열모형을 이용한 자산포트폴리오 관리의 개선 방안)

  • 이창수
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.160-171
    • /
    • 2003
  • Criteria for the comparison of quality of asset portfolio management are risk and return. In this paper a method to use structural time-series model to determine an optimal portfolio for the improvement of quality of asset portfolio management is suggested. In traditional mean variance analysis expected return is assumed to be time-invariant. However, it is more realistic to assume that expected return is temporally dynamic and structural time-series model can be used to reflect time-varying nature of return. A data set from an insurance company was used to show validity of suggested method.

Nonlinear structural modeling using multivariate adaptive regression splines

  • Zhang, Wengang;Goh, A.T.C.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.569-585
    • /
    • 2015
  • Various computational tools are available for modeling highly nonlinear structural engineering problems that lack a precise analytical theory or understanding of the phenomena involved. This paper adopts a fairly simple nonparametric adaptive regression algorithm known as multivariate adaptive regression splines (MARS) to model the nonlinear interactions between variables. The MARS method makes no specific assumptions about the underlying functional relationship between the input variables and the response. Details of MARS methodology and its associated procedures are introduced first, followed by a number of examples including three practical structural engineering problems. These examples indicate that accuracy of the MARS prediction approach. Additionally, MARS is able to assess the relative importance of the designed variables. As MARS explicitly defines the intervals for the input variables, the model enables engineers to have an insight and understanding of where significant changes in the data may occur. An example is also presented to demonstrate how the MARS developed model can be used to carry out structural reliability analysis.

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

An Equivalent Model for Seismic Analysis of Structures Connected by a Sky-bridge (Sky-bridge로 연결된 구조물의 지진해석을 위한 등가모델)

  • Yang, Ah-Ram;Kim, Hyun-Su;Lee, Dong-Guen;Ah, Sang-Kyung;Oh, Jung-Keun;Moon, Yeong-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.203-208
    • /
    • 2008
  • Recently, high-rise building structures connected by a sky-bridge are frequently constructed. To predict accurate dynamic responses of structures connected a sky-bridge, time history analysis is required. Repetitive analyses are required in the design process. If the entire structure model is employed in the repetitive time history analysis, it would take a lot of computational time and engineers' efforts. Therefore, an equivalent model for high-rise building structures connected by a sky-bridge was proposed in this study. The proposed model consists of cantilever having original structure's stiffnesses and masses. Based on the analytical results, it has been shown that the equivalent model can reduce the analysis time and provide similar seismic responses to the original model.

  • PDF