• Title/Summary/Keyword: Structural Impedance

Search Result 262, Processing Time 0.026 seconds

Experimental and Numerical Validation of the Technique for Concrete Cure Monitoring Using Piezoelectric Admittance Measurements (어드미턴스 기반 콘크리트 경화 모니터링의 실험 및 수치적 검증)

  • Kim, Wan Cheol;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.217-224
    • /
    • 2016
  • This paper presents a new technique for monitoring the concrete curing process using embedded piezoelectric transducers via admittance measurements. When a piezoelectric transducer is embedded in a structure, the electrical impedance (admittance) of the transducer is coupled with the mechanical impedance of the host structure, which allows monitoring of the structural condition. In this study, the admittance signatures are used for monitoring the concrete curing process. This new method is based on an admittance-based sensor diagnostic process, in which the capacitance values of the piezoelectric transducers are dependent on the strength of the host structure. We numerically and experimentally investigated the variations in capacitive value during the curing process. The results demonstrate that there is a clear relationship between the concrete curing status and the slope, this indicates that the proposed method could be efficiently used for monitoring the curing status of a concrete structure.

Experimental Study on the Corrosion Behavior of Al Coatings Applied by Plasma Thermal Arc Spray under Simulated Environmental Conditions (모사 부식 환경에서 플라즈마 아크용사에 의한 Al 코팅의 부식특성에 관한 실험적 연구)

  • Jeong, Hwa-Rang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.559-570
    • /
    • 2023
  • The corrosion of structural steel used in the construction industry is increasing due to the industrialization where many aggressive ions released in the atmosphere. Therefore, in the present study Al coating was deposited by arc and plasma arc thermal spray process and compared their effectiveness in simulated weathering condition i.e. Society of Automotive Engineers(SAE) J2334 solution which mostly contain Cl- and CO32- ions. Different analytical techniques have been used to characterize the coating and draw the corrosion mechanism. The Al coating deposited by plasma arc thermal spray process exhibited uniform, dense and layer by layer deposition resulting higher bond adhesion values. The open circuit potential(OCP) of Al coating deposited this process is exhibited more electropositive values than arc thermal spray process in SAE J2334 solution with immersion periods. The total impedance of plasma arc thermal spray process exhibited higher than arc thermal spray process. The corrosion rate of the plasma arc thermal sprayed Al coating is reduced by 20% compared to arc thermal spray process after 23 days of immersion in SAE J2334 solution.

Prediction of Heavy-Weight Floor Impact Sound in Multi-unit House using Finite Element Analysis (유한요소해석을 이용한 공동주택의 중량충격음 예측)

  • Mun, Dae-Ho;Lee, Sang-Hyun;Hwang, Jae-Seung;Baek, Gil-Ok;Park, Hong-Gun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.645-657
    • /
    • 2015
  • In this study floor impact noise and structure acceleration response of bare concrete slabs were predicted by using Finite Element Analysis(FEA). Prediction results were compared with experimental results to prove the accuracy of numerical model. Acoustic absorption were addressed by using panel impedance coefficients with frequency characteristics and structural modal damping of numerical model were applied by modal testing results and analysis of prediction and test results. By using frequency response function, the floor acceleration and acoustic pressure responses for various impact sources were calculated at the same time. In the FEA, the natural frequencies and the shapes of vibration and acoustic modes can be estimated through the eigen-value analysis, and it can be visually seen the vibration and sound pressure field and the contribution of major modes.

Validation of Piezoelectric Sensor Diagnostics Algorithm Using Instantaneous Baseline Data (Admittance를 기반으로 한 센서 자가 진단 알고리즘의 실험적 검증 - 상호비교를 통한 센서 결함 탐지)

  • Jo, HyeJin;Jung, Hwee Kwon;Park, Tong il;Park, Gyuhae
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.148-154
    • /
    • 2015
  • In order to detect damage in early stages and properly maintaining structures, the structural health monitoring technology is employed. In most cases, active-sensing SHM needs many piezoelectric (PZT) sensors and actuators. Thus, if there is a defect on PZT used for active-sensing SHM, the structural status could be misclassified. This study, for reliable SHM performance, investigated to detect defects of sensors by using the admittance-based sensor diagnostics. This study also introduced an algorithm that can diagnose sensor defects based only on data measured from the sensors in case that information about the changes in adhesive and environmental investigation, this study confirms that the proposed algorithm could be efficiently applied to real-world structures in which a significant temperature variation could take place.

Level Set based Topological Shape Optimization of Phononic Crystals (음향결정 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Hashimoto, Hiroshi;Abe, Kazuhisa;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.549-558
    • /
    • 2012
  • A topology optimization method for phononic crystals is developed for the design of sound barriers, using the level set approach. Given a frequency and an incident wave to the phononic crystals, an optimal shape of periodic inclusions is found by minimizing the norm of transmittance. In a sound field including scattering bodies, an acoustic wave can be refracted on the obstacle boundaries, which enables to control acoustic performance by taking the shape of inclusions as the design variables. In this research, we consider a layered structure which is composed of inclusions arranged periodically in horizontal direction while finite inclusions are distributed in vertical direction. Due to the periodicity of inclusions, a unit cell can be considered to analyze the wave propagation together with proper boundary conditions which are imposed on the left and right edges of the unit cell using the Bloch theorem. The boundary conditions for the lower and the upper boundaries of unit cell are described by impedance matrices, which represent the transmission of waves between the layered structure and the semi-infinite external media. A level set method is employed to describe the topology and the shape of inclusions. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. Through several numerical examples, the applicability of the proposed method is demonstrated.

Phase Transition and Relaxation Properties of Nonlinear-Optical KTP Single Crystal (비선형광학 단결정 KTP의 상전이 및 완화특성에 관한 연구)

  • Choi, Byung-Chun
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.386-393
    • /
    • 1998
  • We have carried out the measurements of complex dielectric constants with impedance/gain-phase analyzer using capacitor method and the experiments of high temperature X-ray powder diffraction with X-ray diffractometer using ${\theta}-2{\theta}$ scan method for the KTP single crystal which has the premium nonlinear optical properties. From the results of high temperature X-ray powder diffraction experiments, we have found that KTP does not undergo structural phase transition below $900^{\circ}C$. It is clear that KTP undergoes structural phase transition around $900^{\circ}C$ and belongs to orthorhombic above $900^{\circ}C$ still. However, we have applied phenomenological relation of dielectric relaxation to the results of complex dielectric measurement and have found that relaxation mechanism of KTP well satisfies the Cole-Cole relation over the temperature range from $-78^{\circ}C$ to $200^{\circ}C$. And also the relaxation time well satisfies the Vogel-Fulcher relation. It is regarded that the hopping and thermally activated diffusion mechanism may control the conduction behavior of KTP above $200^{\circ}C$.

  • PDF

Numerical Investigation for Multi-layer Shock Absorber to Improve Survivability of Fuze at High Impact (고충격에 신관의 생존성을 향상시키기 위한 다층 충격완충장치 전산해석 연구)

  • Soh, Kyoung Jae;Kim, Minkyum;Lee, Daehee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.255-261
    • /
    • 2020
  • This study proposes a method of constructing an effective shock absorber. The existing shock absorber is fabricated only with polyethylene; however, the new shock absorber comprises polyethylene on the outside and a high-density material on the inside. The shock was mostly reduced when the density difference between the inner and outer materials was large. Aluminum, titanium, and copper were chosen as the outer structure of two-layer. Shock reduction was most effective in copper with the highest density, and the maximum deceleration was reduced by 43% while the impulse was reduced by 51% in the proposed shock absorber than the traditional shock absorber. In the cases of four-layer and six-layer shock absorbers, the impulse was reduced, but the maximum deceleration was increased. The fuze must survive from the biggest shock and the remaining shock waves should not exceed the threshold. Thus, a two-layer structure shock absorber using polyethylene-copper was proposed.

Study on Atmospheric Corrosion for Two Different Marine Environments in India

  • Saha, Jayanta Kumar
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.120-127
    • /
    • 2007
  • In any developing nation major investment goes for infrastructure and it is not exception in India. Good numbers of buildings, bridges, shopping malls, car parks etc. are coming up with steel for sustainable development. Thus protecting the structures from corrosion are the challenges faced by professionals for all types of steel structures. About 3% of GDP is accounted for loss due to corrosion. To combat this up to date corrosion map is called for as the country has wide variation of climatic zones with vastcoastline. Logically organic paint system can be prescribed based on the corrosion rate on bare steel with respect to environment. Present paper will emphasis on the study conducted on two types of structural steel coated with organic paint located in twomarine environment having been exposed for three years, Test coupons made from steels both bare and coated are deployed at two field stations having marine (Digha) and industrial marine (Channai) environments. Various tests like AC impedance DC corrosion, polarisation, salt spray test, $SO_2$ chamber and Raman spectroscopy were carried out both in laboratory on fresh as well as coupons collected from exposure sites. Rust formed on the bare and scribed coated coupons are investigated. It is found that normal marine environment at Digha exhibits higher corrosion rate than polluted marine environment in Channai. Rust analysis indicates formation of ${\propto}$-FeoOH protects or reduces corrosion rate at Channai and formation of non-protective ${\gamma}$-FeoOH increases corrosion rate at Digha. The slower corrosion rate in Channai than at Digha is attributed due to availability of $SO_2$, in the environment, which converts non‐protective rust ${\gamma}$-FeoOH to protective rust ${\propto}$-FeoOH. While comparing the damage on the coated panels it is found that low alloy structural steel provides less damage than plain carbon steel. From the experimentations a suitable paint system specification is drawn for identical environments for low medium and high durability.

Structural and Electrochemical Characterization of LiFePO4 Synthesized by Hydrothermal Method

  • Jeon, Yeon-Su;Jin, En-Mei;Jin, Bo;Jun, Dae-Kyoo;Han, Zhen-Ji;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.41-45
    • /
    • 2007
  • Phospho-olivine $LiFePO_4$ cathode materials were prepared by hydrothermal reaction. Carbon black was added to enhance the electrical conductivity of $LiFePO_4$. The structural and morphological performance of $LiFePO_4$ and $LiFePO_4$-C powders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). $LiFePO_4$/Li and $LiFePO_4$-C/Li cells were characterized electrochemically by cyclic voltammogram (CV), charge/discharge experiments and ac impedance spectroscopy. The results showed that the discharge capacity of $LiFePO_4$/Li cell was 147 mAh/g at the first cycle and 118 mAh/g after 30 cycles, respectively. The discharge capacity of $LiFePO_4$-C/Li cell with 5 wt% carbon black was the largest among $LiFePO_4$-C/Li cells, 133 mAh/g at the first cycle and 128 mAh/g after 30 cycles, respectively. It was demonstrated that cycling performance of $LiFePO_4$-C/Li cell with 5 wt% carbon black was better than that of $LiFePO_4$/Li cell.

Study on the Performance of Waffle slab by Variation on the Section Properties of the Constituent Structural Elements (구조요소의 단면특성에 따른 와플슬래브의 동적특성 분석)

  • Choong, K.K.;Kim, Jae-Yeol;Kim, Kwang-Il;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.61-68
    • /
    • 2009
  • This paper is concerned with the investigation of the structural behavior of waffle structure. Parametric variation on waffle floor thickness, main beam depth and column sizes are imposed to study the effects on mode shapes and natural frequencies of waffle structures. Comparisons between FEM models using shell and 3D-solid elements have also been made. The analysis result has shown that the mode frequencies increase with i) increase in main beam depth at level 2 and ii) decrease in waffle slab thickness at level 3. Both 3D and 2D model shown similar mode shapes. Besides, there is a consistent difference in mode frequencies between 3D and 2D model ranging from 25% to 36%.

  • PDF