• 제목/요약/키워드: Structural Holes

검색결과 232건 처리시간 0.027초

볼트홀을 산소토치로 천공한 강재의 인장강도 및 지압이음강도 (Tensile Strength of Plate with Bolt Hole and Bearing Strength of Bolted Connection by Oxygen Torch Cut)

  • 박용명;이건준;김동현;주호중
    • 한국강구조학회 논문집
    • /
    • 제26권6호
    • /
    • pp.617-626
    • /
    • 2014
  • 본 연구에서는 드릴천공 대비 산소토치로 볼트홀을 천공한 강재의 인장강도 평가와 지압이음강도 평가를 위한 실험 연구를 수행하였다. 강재의 인장강도 평가를 위해 앵글과 H-형강으로부터 각각 두께 10mm와 20mm의 드릴 및 산소천공 시험편을 제작하였다. 지압이음강도의 평가를 위해서는 모재와 첨접판을 드릴천공한 강재와 산소천공한 강재를 조합하여 시험체들을 제작하고 볼트이음강도 평가 실험을 수행하였다. 한편, 산소천공 시 열영향으로 인한 볼트홀 주위의 강재 성질의 변화를 평가하기 위해 비커스 경도를 측정하고 그 결과를 제시하였다. 또한, 산소천공 시 볼트홀 주위의 경도 증가에 따른 볼트이음강도의 평가를 위해 수치해석을 수행하였다.

이동최소자승 중첩 격자 기법과 유전자 알고리듬을 이용한 2차원 구조물의 경감공 위치 최적 설계 (Optimization of Position of Lightening Hole in 2D Structures through MLS basede Overset Metheod along with Genetic Algorithm)

  • 오민환;우동주;조진연
    • 한국항공우주학회지
    • /
    • 제36권10호
    • /
    • pp.979-987
    • /
    • 2008
  • 항공우주 구조물의 설계 시, 과도한 응력집중을 방지하기 위해 경감공의 위치를 변경해야 하는 경우가 종종 발생한다. 이러한 위치 최적 설계를 위해서는 경감공의 위치 갱신에 따라 변경된 구조 형상을 반영할 수 있도록 재 모델링을 수행해야 한다. 널리 사용되는 재 모델링 기법으로는 재 격자 생성기법을 들 수 있다. 그러나 구조물의 형상이 변경될 때마다 격자를 재생성 할 경우 많은 시간이 소요되며, 특히 사면체나 삼각형에 비해 좋은 성능을 가진 육면체나 사각형 격자 사용에 제약이 따르게 된다. 본 논문에서는 이러한 문제점을 보완하기 위해 이동최소자승법 기반의 중첩 격자 기법과 유전자 알고리듬을 이용한 새로운 위치 최적 설계 알고리듬을 제안하였으며, 제안된 위치 최적 설계 알고리듬의 성능을 평가하기 위해 2차원 구조물의 경감공 위치 최적 설계를 수행하였다.

2024-T351 알루미늄 합금판 프레팅 피로수명 예측 (Prediction of Fretting Fatigue Life on 2024-T351 Al-alloy)

  • 권정호;황경정
    • 한국항공우주학회지
    • /
    • 제35권7호
    • /
    • pp.601-611
    • /
    • 2007
  • 기계적 체결로 조립된 대부분의 항공기 구조는 볼트나 리벳구멍 가장자리의 부재간 접촉면 또는 체결구멍 부위에서 프레팅 손상을 받게 된다. 이러한 프레팅 부분슬립 경계부위에는 높은 접촉응력이 유발되고 이로 인해 프레팅 피로균열이 조기에 발생되어 피로수명을 현저히 감소시키게 된다. 본 연구는 2024-T351 알루미늄 합금판에 대하여 서로 다른 프레팅 조건하에서 일련의 프레팅 피로실험을 수행하여 역학적 파라미터와 프레팅 접촉조건 변수들과의 정량적 연계성을 검토하였다. 그리고 역학적 파라미터를 기초로 하는 기존의 수명예측 모델의 유효성을 분석하고 수정 적용하였다. 또한 파라미터 변화에 따른 접촉면에서의 응력 및 변형률 변화 거동을 고찰하기 위하여 탄소성 유한요소해석을 통하여 접촉응력을 해석하고 프레팅접촉 파라미터들과 피로균열 발생수명 사이의 관계에 대해 고찰하였다.

Theoretical modelling of post - buckling contact interaction of a drill string with inclined bore-hole surface

  • Gulyayev, V.I.;Andrusenko, E.N.;Shlyun, N.V.
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.427-448
    • /
    • 2014
  • At present, the time of easy oil and gas is over. Now, the largest part of fossil fuels is concentrated in the deepest levels of tectonic structures and in the sea shelves. One of the most cumbersome operations of their extraction is the bore-hole drilling. In connection with austere tectonic and climate conditions, their drivage every so often is associated with great and diversified technological difficulties causing emergencies on frequent occasions. As a rule, they are linked with drill string accidents. A key role in prediction of these situations should play methods of theoretical modelling. For this reason, there is a growing need for development and implementation of new numerical methods for computer simulation of critical and post-critical behavior of drill strings (DSs). In this paper, the processes of non-linear deforming of a DS in cylindrical cavity of a deep bore-hole are considered. On the basis of the theory of curvilinear flexible rods, non-linear constitutive differential equations are deduced. The effects of the longitudinal non-uniform preloading, action of torque and interaction between the DS and the bore-hole surface are taken into account. Owing to the use of curvilinear coordinates in the constraining cylindrical surface and a specially chosen concomitant reference frame, it became possible to separate the desired variables and to reduce the total order of the equation system. To solve it, the method of continuation the solution by parameter and the transfer matrix technique are applied. As a result of the completed numerical analysis, the critical states of the DS loading in the cylindrical channels of inclined bore-holes are found. It is shown that the modes of the post-critical deforming of the DS are associated with its irregular spiral curving prevailing in the zone of bottom-hole-assembly. The possibility of invariant state generation during post-critical deforming is established, condition of its bifurcation is formulated. It is shown that infinite variety of loads can correspond to one geometrical configuration of the DS. They differ each from other by contact force functions.

A distributed piezo-polymer scour net for bridge scour hole topography monitoring

  • Loh, Kenneth J.;Tom, Caroline;Benassini, Joseph L.;Bombardelli, Fabian A.
    • Structural Monitoring and Maintenance
    • /
    • 제1권2호
    • /
    • pp.183-195
    • /
    • 2014
  • Scour is one of the leading causes of overwater bridge failures worldwide. While monitoring systems have already been implemented or are still being developed, they suffer from limitations such as high costs, inaccuracies, and low reliability, among others. Also, most sensors only measure scour depth at one location and near the pier. Thus, the objective is to design a simple, low cost, scour hole topography monitoring system that could better characterize the entire depth, shape, and size of bridge scour holes. The design is based on burying a robust, waterproofed, piezoelectric sensor strip in the streambed. When scour erodes sediments to expose the sensor, flowing water excites it to cause the generation of time-varying voltage signals. An algorithm then takes the time-domain data and maps it to the frequency-domain for identifying the sensor's resonant frequency, which is used for calculating the exposed sensor length or scour depth. Here, three different sets of tests were conducted to validate this new technique. First, a single sensor was tested in ambient air, and its exposed length was varied. Upon verifying the sensing concept, a waterproofed prototype was buried in soil and tested in a tank filled with water. Sensor performance was characterized as soil was manually eroded away, which simulated various scour depths. The results confirmed that sensor resonant frequencies decreased with increasing scour depths. Finally, a network of 11 sensors was configured to form a distributed monitoring system in the lab. Their exposed lengths were adjusted to simulate scour hole formation and evolution. Results showed promise that the proposed sensing system could be scaled up and used for bridge scour topography monitoring.

고주파 MCM-C용 내부저항의 제작 및 특성 평가 (Fabrication and Characterization of Buried Resistor for RF MCM-C)

  • 조현민;이우성;임욱;유찬세;강남기;박종철
    • 마이크로전자및패키징학회지
    • /
    • 제7권1호
    • /
    • pp.1-5
    • /
    • 2000
  • 기판과의 동시소성에 의한 고주파 MCM-C (Multi Chip Module-Cofired)용 저항을 제작하고 DC 및 6 GHz 까지의 RF 특성을 측정하였다. 기판은 저온 소성용 기판으로서 총 8층으로 구성하였으며, 7층에 저항체 및 전극을 인쇄하고 via를 통하여 기판의 최상부까지 연결되도록 하였다. 저항체 페이스트, 저항체의 크기, via의 길이 변화에 따라서 저항의 RF 특성은 고주파일수록 더욱 DC 저항값에서 부터 변화되는 양상을 보였다. 측정결과로부터 내부저항은 저항용량에 관계없이 전송선로, capacitor, inductor성분이 저항성분과 함께 혼재되어 있는 하나의 등가회로로 표현할 수 있으며, 내부저항의 구조 변화에 의한 전송선로의 특성임피던스 $Z_{o}$의 변화가 RF 특성을 크게 좌우하는 것으로 보여진다.

  • PDF

Photodegradation of MB on Fe/CNT-TiO2 Composite Photocatalysts Under Visible Light

  • Zhang, Kan;Meng, Ze-Da;Choi, Jong-Geun;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.246-251
    • /
    • 2010
  • The composite photocatalysts of a Fe-modified carbon nanotube (CNT)-$TiO_2$ were synthesized by a two-step sol-gel method at high temperature. Its chemical composition and surface properties were investigated by BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that the BET surface area was improved by modification of Fe, which was related to the adsorption capacity for each composite. Interesting thin layer aggregates of nanosized $TiO_2$ were observed from TEM images, probably stabilized by the presence of CNT, and the surface and structural characterization of the samples was carried out. The XRD results showed that the Fe/CNT-$TiO_2$ composites contained a mix of anatase and rutile forms of $TiO_2$ particles when the precursor is $TiOSO_4{\cdot}xH_2O$ (TOS). An excellent photocatalytic activity of Fe/CNT-$TiO_2$ was obtained for the degradation of methylene blue (MB) under visible light irradiation. It was considered that Fe cation could be doped into the matrix of $TiO_2$, which could hinder the recombination rate of the excited electrons/holes. The photocatalytic activity of the composites was also found to depend on the presence of CNT. The synergistic effects among the Fe, CNT and $TiO_2$ components were responsible for improving the visible light photocatalytic activity.

Evaluation of the KN-12 Spent Fuel Transport Cask by Analysis

  • Chung, Sung-Hwan;Lee, Heung-Young;Song, Myung-Jae;Rudolf Diersch;Reiner Laug
    • Nuclear Engineering and Technology
    • /
    • 제34권3호
    • /
    • pp.187-201
    • /
    • 2002
  • The KN-12 cask is designed to transport 12 PWR spent nuclear fuels and to comply with the requirements of Korea Atomic Energy Act, IAEA Safety Standards Series No.57-1 and US 10 CFR Part 71 for a Type B(U)F package. It provides containment, radiation shielding, structural integrity, criticality control and heat removal for normal transport and hypothetical accident conditions. W.H 14$\times$14, 16$\times$16 and 17$\times$17 fuel assemblies with maximum allowable initial enrichment of 5.0 wt.%, maximum average burn-up of 50,000 MWD/MTU and minimum cooling time of 7 years being used in Korea will be loaded and subsequently transported under dry and wet conditions. A forged cylindrical cask body which constitutes the containment vessel is closed by a cask lid. Polyethylene rods for neutron shielding are arranged in two rows of longitudinal bore holes in the cask body wall. A fuel basket to accommodate up to 12 PWR fuel assemblies provides support of the fuels, control of criticality and a path to dissipate heat. Impact limiters to absorb the impact energy under the hypothetical accident conditions are attacked at the top and at the bottom side of the cask during transport. Handling weight loaded with water is 74.8 tons and transport weight loaded with water with the impact limiters is 84.3 tons. The cask will be licensed in accordance with Korea Atomic Energy Act 3nd fabricated in Korea in accordance with ASME B&PV Code Section 111, Division 3.

초음파 분무 열분해 공정을 이용한 TiO2와 TiOF2 복합체 분말의 합성과 상 분율에 따른 광학적 성질 (Synthesis and Optical Properties of TiO2/TiOF2 Composite Powder with Controlled Phase Fractions via an Ultrasonic Spray Pyrolysis Process)

  • 황보영;박우영;이영인
    • 한국재료학회지
    • /
    • 제27권6호
    • /
    • pp.325-330
    • /
    • 2017
  • Photoelectron-hole separation efficiency plays an important role in the enhancement of the photocatalytic activity of photocatalysts towards the degradation of organic molecules. In this study, $TiO_2/TiOF_2$ heterostructured composite powders with suitable band structures, which structures are able to separate photoelectron-hole pairs, have been synthesized using a simple and versatile ultrasonic spray pyrolysis process. In addition, their phase volume fractions have been controlled by varying the pyrolysis temperature from $400^{\circ}C$ to $800^{\circ}C$. The structural and optical properties of the synthesized powders have been characterized by X-ray diffraction, scanning electronic microscopy and UV-vis spectroscopy. The powder with a phase volume ratio close to 1, compared with single $TiOF_2$ and other composite powders with different phase volume fractions, was found to have superior photocatalytic activity for the degradation of rhodamine B. This result shows that the $TiO_2/TiOF_2$ heterostructure promotes the separation of the photoinduced electrons and holes and that this powder can be applicable to environmental cleaning applications.

Fabrication and Characterization of InGaN/GaN LED structures grown on selectively wet-etched porous GaN template layer

  • Beck, Seol;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.124-124
    • /
    • 2010
  • Much interest has been focused on InGaN-based materials and their quantum structures due to their optoelectronics applications such as light emitting diode (LED) and photovoltaic devices, because of its high thermal conductivity, high optical efficiency, and direct wide band gap, in spite of their high density of threading dislocations. Build-in internal field-induced quantum-confined Stark effect in InGaN/GaN quantum well LED structures results in a spatial separation of electrons and holes, which leads to a reduction of radiative recombination rate. Therefore, many growth techniques have been developed by utilizing lateral over-growth mode or by inserting additional layers such as patterned layer and superlattices for reducing threading dislocations and internal fields. In this work, we investigated various characteristics of InGaN multiple quantum wells (MQWs) LED structures grown on selectively wet-etched porous (SWEP) GaN template layer and compared with those grown on non-porous GaN template layer over c-plane sapphire substrates. From the surface morphology measured by atomic force microscope, high resolution X-ray diffraction analysis, low temperature photoluminescence (PL) and PL excitation measurements, good structural and optical properties were observed on both LED structures. However, InGaN MQWs LED structures grown on SWEP GaN template layer show relatively low In composition, thin well width, and blue shift of PL spectra on MQW emission. These results were explained by rough surface of template layer, reduction of residual compressive stress, and less piezoelectric field on MQWs by utilizing SWEP GaN template layer. Better electrical properties were also observed for InGaN MQWs on SWEP GaN template layer, specially at reverse operating condition for I-V measurements.

  • PDF