• Title/Summary/Keyword: Structural Holes

Search Result 233, Processing Time 0.018 seconds

Effects of Environmental Uncertainty on Interfirm Governance Mechanisms: The Moderating Role of Structural Holes

  • KIM, Minjung;KIM, Taewan
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.9
    • /
    • pp.11-26
    • /
    • 2022
  • Purpose: Manufacturers rely on interfirm governance mechanisms to reduce the risks inherent in uncertain environments; however, it is unclear which governance mechanisms are developed to manage relationships with suppliers. This study sought to enhance knowledge of how environmental uncertainty affects interfirm governance mechanisms under conditions reflecting varying levels of structural holes. To this end, the study investigated the relationships between manufacturers and major first-tier and sub-suppliers. In particular, the moderating effect of structural holes is examined. Research design, data and methodology: A questionnaire survey was conducted with a major first-tier supplier of a Korean engineering firm. Proposed hypotheses were tested using structural equation modeling. Results: The results show that while the relationship between environmental uncertainty and unilateral governance is positive but statistically insignificant, with bilateral governance is negative and statistically significant. The study also demonstrates that when structural holes are considered, the effects between environmental uncertainty and governance mechanisms are attenuated. Conclusions: This study suggests some theoretical and managerial contributions between exchange partners, especially, the results suggest that structural holes have a critical competitive advantage in uncertain environments. Therefore, manufacturers should carefully consider how they deal with environmental uncertainty when they make a business decision under structural holes situations.

Elastic distortional buckling of cold-formed steel Z-Beams with stiffened holes using reduced thickness

  • Nasam S. Khater;Mahmoud H. El-Boghdadi;Nashwa M. Yossef
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.225-241
    • /
    • 2024
  • For several reasons, cold-formed steel (CFS) beams are often manufactured with holes. Nevertheless, because of holes, the reduction in the web area causes a decrease in the bending strength. Edge stiffeners are presently added around the holes to improve the bending strength of flexural members. Therefore, this research studies CFSZ-beams with stiffened holes and investigates how edge stiffener affects bending strength and failure modes. Nonlinear analysis was carried out using ABAQUS software and the developed finite element (FE) model was verified against tests from previous studies. Using the verified FE model, a parametric study of 104 FE models was conducted to investigate the influence of key parameters on bending strength of Z- sections. The results indicated that the effect of holes is less noticeable in very thin Z-sections. Moreover, adding edge stiffeners around the holes improves the flexural capacity of Z-beams and sometimes restores the original bending capacity. Because the computational techniques used to solve the CFS buckling mode with stiffened holes are still unclear, a numerical method using constrained and unconstrained finite strip method (CUFSM) software was proposed to predict the elastic distortional buckling moment for a wide variety of CFSZ-sections with stiffened holes. A numerical method with two procedures was applied and validated. Upon comparison, the numerical method accurately predicted the distortional buckling moment of CFS Z-sections with stiffened holes.

How Innovative is a Firm in a Structural Hole Position?

  • Minjung KIM
    • The Journal of Industrial Distribution & Business
    • /
    • v.15 no.8
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: Marketing networks are essential for firms to gain new information and resources, yet their effect on innovation performance under uncertainty remains unclear. This study aims to elucidate the effects of technological and demand variability on the innovation performance of first-tier suppliers, considering different levels of structural holes. It particularly explores how structural holes moderate the relationship between uncertain factors and innovation performance. Research design, data and methodology: To assess the hypotheses, a survey was conducted with the first-tier suppliers. The survey targeted internal networks and the relationships between manufacturers, suppliers, and subsuppliers. Structural equation modeling was employed to validate the hypotheses using measures from previous research. Results: The findings indicate that the impact of technological uncertainty and demand variability on innovation performance varies based on the extent of structural holes in the network. Conclusions: This study provides both theoretical and practical insights for distribution channels, highlighting the competitive advantage of interfirm networks in uncertain conditions. However, the focus on the engineering industry may limit the generalizability of the findings. Future research should explore a broader range of industries to improve result applicability.

The Role of Structural Holes in Uncertain Environments in Channel Relationships

  • Kim, Min-Jung
    • Journal of Distribution Science
    • /
    • v.16 no.6
    • /
    • pp.25-35
    • /
    • 2018
  • Purpose - Although marketing networks are crucial competitive advantage in terms of firm's new information and resource acquisition ability, their impact on new product development performance remains vague, especially under environmental uncertainty. The principal objective of this research is to provide a better understanding of effects of technological uncertainty and volume uncertainty on first tier supplier's perceived performance of new product development under conditions reflecting varying levels of structural holes. Specifically, this research examines the moderating effect of structural holes on the relationship between environmental uncertainty and new product development performance. Research design, data, and methodology - To test the hypotheses, a questionnaire survey was conducted with a Korean engineering firm's major first-tier suppliers in the context of internal network entities, manufacturer-supplier-subsupplier relationships, and to verify the proposed hypotheses, structural equation modeling was established. Construct measures were based on existing measures and previous research. Results - The survey results indicate that technological uncertainty and volume uncertainty differentially affect NPD performance under conditions of high and low structural holes. Conclusions - This study offer some theoretical and practical implications among distribution channel members, especially, this study suggests that interfirm networks have critical competitive advantage in uncertain environments. The distinctiveness of engineering industry might limit the generalizability of the results. Thus, future research should consider a wider range of industries.

The Effects of Social Network Positions on Individual Performance (사회적 네트워크가 성과에 미치는 영향)

  • Kim, Changsik;Kim, Tae kyung;Kwahk, Keeyoung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.133-141
    • /
    • 2018
  • The purpose of this study was to propose a model of knowledge transfer in IT outsourcing. In this study, structural holes were chosen as antecedent factors, and job performance as a consequence factor. We conducted a survey in which we collected data from 42 respondents working in one of the leading IT companies in Seoul, South Korea. The data were analyzed using UCINET 6 and SmartPLS 2.0. The antecedent factors (structural holes in closeness network and in professional network) turned out to be statistically significant. Knowledge transfer considerably influenced job performance. Lastly, implications and limitations of these findings were discussed, and directions for future research were suggested.

Level Calibration of Ultrasonic Nondestructive Testing Considering Flaw Position (불연속부의 위치를 고려한 초음파비파괴검사 등급보정)

  • Shin, Byoung-Chul;Song, Ho-San;Jeong, Hwa-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.155-160
    • /
    • 2001
  • KS-code(KS B 0896) for nondestructive ultrasonic testing classifies the quality level by relative flaw size only. But flaw position is more important than the flaw size. Test blocks having artificial holes near surface show lower yield load than the blocks having deeply located holes from the surface. So, level calibration table was proposed for classifying the quality level of welded steel structures.

  • PDF

Temperature Analysis of the Cylindrical Structure with Multi-Holes of HANARO Irradiation Test (하나로 조사시험용 다공 원통헝 구조물의 온도해석)

  • Choi Young-Jin;Kang Young-Hwan;Lee Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.405-412
    • /
    • 2004
  • During the irradiation tests of material and fuel rod, all components of the cylindrical structure with multiple holes act like heat sources due to high gamma heat and fission heat. The objective of this study is to formulate the general solution for the temperature distribution to estimate the thermal integrity of structure during irradiation tests. For the temperature distribution analysis, the two-dimensional heat conduction theory is used. The unmerical analysis is performed by the commercial finite element analysis code, ANSYS 6.1. If the cylindrical structure with hole number would not exceed three holes, the analysis results and finite element results are good agreement together. For the structure with four holes, the discrepancy between FE results and analysis results of the structural temperature distribution is increased.

Stress analysis of an infinite rectangular plate perforated by two unequal circular holes under bi-axial uniform stresses

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.747-754
    • /
    • 2017
  • Exact solutions for stresses for an infinite rectangular plate perforated by two circular holes of different radii subjected to uni-axial or bi-axial uniform loads are investigated using the Airy stress function. The hoop stresses occurring at the edge of the circular hole are computed and plotted. Comparisons are made for the stress concentration factors for several types of loading conditions.

Structural Durability Analysis due to Hole Configuration Variation of Bike Disc Brake (자전거 디스크 브레이크 구멍 형상 변화에 따른 구조적 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.44-49
    • /
    • 2014
  • As expansion and contraction of bike disk brake are happened continuously by temperature at repeated urgent braking. In this study, 3 kinds of model are designed according to configurations of holes and thermal durabilities on bike disk brake are investigated by comparing 3 models through temperature and thermal analyses. Maximum thermal stress happened at the disk contacted with pad and the connection part fixing disk rotor. Instead of initial state, the temperature is uniformly distributed at transient state. As the area of hole at disk rotor face becomes wider, thermal stress becomes lower at the initial state. On the other hand, in case the number of holes increases, thermal stress becomes lower at the elapsed time of 100 seconds. The thermal durability of bike disk brake can be improved by applying this study result with configurations of holes.

Structural Safety Evaluation by Analysis of Pressure Variation Characteristics of Small Hydro Power Hydraulic Turbine Blades in Sewage Treatment Plant (하수처리장 소수력 수차 블레이드의 압력변화 특성 분석을 통한 구조안전성 평가)

  • Park, Yoo-Sin;Kim, Ki-Jung;Youn, Byong-Don
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.126-131
    • /
    • 2017
  • Numerical analysis using commercial CFD code was carried out to develop the drag force type vertical axis hydraulic turbine for the improvement of the production efficiency of small hydro energy at low flow velocity condition. Blade pressure changes and internal flows were analyzed according to the presence or absence of the hydraulic turbine blade holes at flow velocity of less than 1.0~3.0 m/s. According to the numerical results, the pressure and flow velocity is severly affected by the flow velocity in turbine blade with no holes, while the influence of flow velocity is comparatively decreased in turbine blade with holes. It is also found that the pressure and flow velocity on the blade surface with holes are evenly distributed with no singular location and it is believed that forming a hole in the blade may be helpful in terms of structural safety.