DOI QR코드

DOI QR Code

Stress analysis of an infinite rectangular plate perforated by two unequal circular holes under bi-axial uniform stresses

  • Yang, Yeong-Bin (Department of Civil Engineering, National Taiwan University) ;
  • Kang, Jae-Hoon (Department of Architectural Engineering, Chung-Ang University)
  • Received : 2014.12.29
  • Accepted : 2016.11.18
  • Published : 2017.03.25

Abstract

Exact solutions for stresses for an infinite rectangular plate perforated by two circular holes of different radii subjected to uni-axial or bi-axial uniform loads are investigated using the Airy stress function. The hoop stresses occurring at the edge of the circular hole are computed and plotted. Comparisons are made for the stress concentration factors for several types of loading conditions.

Keywords

Acknowledgement

Supported by : Chongqing Science and Technology Commission

References

  1. Aksu, G. and Ali, R. (1976), "Determination of dynamic characteristics of rectangular plates with cut-outs using finite difference formulation", J. Sound Vib., 44, 147-158. https://doi.org/10.1016/0022-460X(76)90713-6
  2. Azhari, M., Shahidi, A.R. and Saadatpour, M.M. (2005), "Local and post local buckling of stepped and perforated thin plates", Appl. Math. Model., 29(7), 633-652. https://doi.org/10.1016/j.apm.2004.10.004
  3. Azizian, Z.G. and Roberts, T.M. (1983), "Buckling and elasto-plastic collapse of perforated plates", Proceedings of the International Conference on Instability and Plastic Collapse of Steel Structures, London.
  4. Boay, C.G. (1996), "Free vibration of laminated plates with a central circular hole", Compos. Struct., 35, 357-368. https://doi.org/10.1016/S0263-8223(96)00037-2
  5. Brown, C.J. (1990), "Elastic buckling of perforated plates subjected to concentrated loads", Comput. Struct., 36(6), 1103-1109. https://doi.org/10.1016/0045-7949(90)90218-Q
  6. Brown, C.J. and Yettram, A.L. (1986), "The elastic stability of square perforated plates under combination of bending, shear and direct load", Thin Wall. Struct., 4(3), 239-246. https://doi.org/10.1016/0263-8231(86)90005-4
  7. Brown, C.J., Yettram, A.L. and Burnett, M. (1987), "Stability of plates with rectangular holes", J. Struct. Eng., 113(5), 1111-1116. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:5(1111)
  8. Chakherlou, T.N. and Abazadeh, B. (2011), "Estimation of fatigue life for plates including pre-treated fastener holes using different multiaxial fatigue criteria", Int. J. Fatig., 33(3), 343-353. https://doi.org/10.1016/j.ijfatigue.2010.09.006
  9. Chan, R.W.K., Albermani, F. and Kitipornchai, S. (2013), "Experimental study of perforated yielding shear panel device for passive energy dissipation", J. Constr. Steel Res., 91, 14-25. https://doi.org/10.1016/j.jcsr.2013.08.013
  10. Chau, K.T. and Wang, Y.B. (1999), "A new boundary integral formulation for plane elastic bodies containing cracks and holes", Int. J. Solid. Struct., 36, 2041-2074. https://doi.org/10.1016/S0020-7683(98)00078-X
  11. Cheng, B. and Zhao, J. (2010), "Strengthening of perforated plates under uniaxial compression: Buckling analysis", Thin Wall. Struct., 48, 905-914. https://doi.org/10.1016/j.tws.2010.06.001
  12. Cheng, C.J. and Fan, X.J. (2001), "Nonlinear mathematical theory of perforated viscoelastic thin plates with its applications", Int. J Solid. Struct., 38 (36), 6627-6641. https://doi.org/10.1016/S0020-7683(00)00412-1
  13. Dalessandro, J.A. (1976), "Structural considerations for a Tokamak fusion reactor", Nucl. Eng. Des., 39, 141-151. https://doi.org/10.1016/0029-5493(76)90128-X
  14. El-Sawy, K.M. and Martini, M.I. (2007), "Elastic stability of biaxially loaded rectangular plates with a single circular hole", Thin Wall. Struct., 45(1), 122-133. https://doi.org/10.1016/j.tws.2006.11.002
  15. El-Sawy, K.M. and Nazmy, A.S. (2001), "Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes", Thin Wall. Struct., 39, 983-998. https://doi.org/10.1016/S0263-8231(01)00040-4
  16. El-Sawy, K.M., Nazmy, A.S. and Martini, M.I. (2004), "Elastoplastic buckling of perforated plates under uniaxial compression", Thin Wall. Struct., 42, 1083-1101. https://doi.org/10.1016/j.tws.2004.03.002
  17. Fu, L.S. (1996), A First Course in Elasticity, Greyden Press, Columbus, Ohio.
  18. Geannakakes, G.N. (1990), "Vibration analysis of arbitrarily shaped plates using beam characteristic orthogonal polynomials in the semi-analytical 1nite strip method", J. Sound Vib., 137, 283-303. https://doi.org/10.1016/0022-460X(90)90793-Y
  19. Iwaki, T. and Miyao, K. (1980), "Stress concentrations in a plate with two unequal circular holes", Int. J. Eng. Sci., 18, 1077-1090. https://doi.org/10.1016/0020-7225(80)90091-9
  20. Kang, J.H. (2014), "Exact solutions of stresses, strains, and displacements of a perforated rectangular plate by a central circular hole subjected to linearly varying in-plane normal stresses on two opposite edges", Int. J. Mech. Sci., 84, 18-24. https://doi.org/10.1016/j.ijmecsci.2014.03.023
  21. Komur, M.A. (2011), "Elasto-plastic buckling analysis for perforated steel plates subject to uniform compression", Mech. Res. Commun., 38, 117-122. https://doi.org/10.1016/j.mechrescom.2011.01.001
  22. Komur, M.A. and Sonmez, M. (2008), "Elastic buckling of rectangular plates under linearly varying in-plane normal load with a circular cutout", Mech. Res. Commun., 35, 361-371. https://doi.org/10.1016/j.mechrescom.2008.01.005
  23. Lacarac, V., Smith, D.J., Pavier, M.J. and Priest, M. (2000), "Fatigue crack growth from plain and cold expanded holes in aluminium alloys", Int. J. Fatig., 22 (3), 189-203. https://doi.org/10.1016/S0142-1123(99)00126-7
  24. Lam, K.Y., Hung, K.C. and Chow, S.T. (1989), "Vibration analysis of plates with cutouts by the modified Rayleigh-Ritz method", Appl. Acoust., 28, 49-60. https://doi.org/10.1016/0003-682X(89)90030-3
  25. Laura, P.A.A., Romanelli, E. and Rossi, R.E. (1997), "Transverse vibrations of simply supported rectangular plates with rectangular cutouts", J. Sound Vib., 202, 275-283. https://doi.org/10.1006/jsvi.1996.0703
  26. Li, F., He, Y.T., Fan, C.H., Li, H.P. and Zhang, H.X. (2008), "Investigation on three-dimensional stress concentration of LY12-CZ plate with two equal circular holes under tension", Mater. Sci. Eng. A., 483-484, 474-476. https://doi.org/10.1016/j.msea.2006.08.146
  27. Liew, K.M. and Sum, Y.K. (1998), "Vibration of plates having orthogonal straight edges with clamped boundaries", J. of Eng. Mech., 124, 184-192. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:2(184)
  28. Liew, K.M. Ng, T.Y. and Kitipornchai, S. (2001), "A semianalytical solution for vibration of rectangular plates with abrupt thickness variation", Int. J. Solid. Struct., 38, 4937-4954. https://doi.org/10.1016/S0020-7683(00)00329-2
  29. Liew, K.M., Hung, K.C. and Lim, M.K. (1993a), "Method of domain decomposition in vibrations of mixed edge anisotropic plates", Int. J. Solid. Struct., 30, 3281-3301. https://doi.org/10.1016/0020-7683(93)90114-M
  30. Liew, K.M., Hung, K.C. and Lim, M.K. (1993b), "Roles of domain decomposition method in plate vibrations-treatment of mixed discontinuous periphery boundaries", Int. J. Mech. Sci., 35, 615-632. https://doi.org/10.1016/0020-7403(93)90005-F
  31. Liew, K.M., Hung, K.C. and Sum, Y.K. (1995), "Flexural vibration of polygonal plates: treatments of sharp re-entrant corners", J. Sound Vib., 183, 221-238. https://doi.org/10.1006/jsvi.1995.0251
  32. Liew, K.M., Kitipornchai, S., Leung, A.Y.T. and Lim, C.W. (2003), "Analysis of the free vibration of rectangular plates with central cut-outs using the discrete Ritz method", Int. J. Mech. Sci., 45, 941-959. https://doi.org/10.1016/S0020-7403(03)00109-7
  33. Liu, F.L. and Liew, K.M. (1999a), "Vibration analysis of discontinuous Mindlin plates by differential quadrature element method", J. Vib. Acoust., 121, 204-208. https://doi.org/10.1115/1.2893965
  34. Liu, F.L. and Liew, K.M. (1999b), "Differential quadrature element method: a new approach for free vibration analysis of polar Mindlin plates having discontinuities", Comput. Meth. Appl. Mech. Eng., 179, 407-423. https://doi.org/10.1016/S0045-7825(99)00049-3
  35. Liu, Y., Xin, H., He, J., Xue, D. and Ma B. (2013), "Experimental and analytical study on fatigue behavior of composite truss joints", J. Constr. Steel Res., 83, 21-36. https://doi.org/10.1016/j.jcsr.2012.12.020
  36. Maiorana, E., Pellegrino, C. and Modena, C. (2008), "Linear buckling analysis of perforated plates subjected to localized symmetrical load", Eng. Struct., 30, 3151-3158. https://doi.org/10.1016/j.engstruct.2008.04.024
  37. Maiorana, E., Pellegrino, C. and Modena, C. (2009a), "Non-linear analysis of perforated steel plates subjected to localized symmetrical load", J. Constr. Steel Res., 65, 959-964. https://doi.org/10.1016/j.jcsr.2008.03.018
  38. Maiorana, E., Pellegrino, C. and Modena, C. (2009b), "Elastic stability of plates with circular and rectangular holes subjected to axial compression and bending moment", Thin Wall. Struct., 74, 241-255.
  39. Miyata, H. (1970), "Finite elastic deformations of an infinite plate perforated by two circular holes under biaxial tension," Ingenieur-Archiv, 39, 209-218. https://doi.org/10.1007/BF00532454
  40. Moen, C.D. and Schafer, B.W. (2009), "Elastic buckling of thin plates with holes in compression or bending", Thin Wall. Struct., 47, 1597-1607. https://doi.org/10.1016/j.tws.2009.05.001
  41. Muskhelishvili, N.I. (1963), Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, The Netherlands.
  42. Narayanan, R. and Avanessian, N.G.V. (1984), "Elastic buckling of perforated plated under shear", Thin Wall. Struct., 2, 51-73. https://doi.org/10.1016/0263-8231(84)90015-6
  43. Narayanan, R. and Chow, F.Y. (1984), "Ultimate capacity of uniaxially compressed perforated plates", Thin Wall. Struct., 2, 241-264. https://doi.org/10.1016/0263-8231(84)90021-1
  44. Narayanan, R. and Darwish, I.Y.S. (1985), "Strength of slender webs having noncentral holes", Struct. Eng, 63(15), 57-61.
  45. Narayanan, R. and Rockey, K.C. (1981), "Ultimate load capacity of plate girders with webs containing circular cut-outs", Proc. Inst. Civil Eng., 71(2), 845-862.
  46. Nemeth, M. (1996), "Buckling and postbuckling behavior of laminated composite plates with a cutout", NASA Technical Paper, 3587.
  47. Paik, J.K. (2007a), "Ultimate strength of perforated steel plates under edge shear loading", Thin Wall. Struct., 45, 301-306. https://doi.org/10.1016/j.tws.2007.02.013
  48. Paik, J.K. (2007b), "Ultimate strength of steel plates with a single circular hole under axial compressive loading along short edges", Ship. Offshore Struct., 2, 355-360. https://doi.org/10.1080/17445300701623531
  49. Paik, J.K. (2008), "Ultimate strength of perforated steel plates under combined biaxial compression and edge shear loads", Thin Wall. Struct., 46, 207-213. https://doi.org/10.1016/j.tws.2007.07.010
  50. Pan, E.N. (1997), "A general boundary element analysis of 2-D linear elastic fracture mechanics", Int. J. Fract., 88, 41-59. https://doi.org/10.1023/A:1007462319811
  51. Peterson, R.E. (1974), Stress Concentration Factor, John Wiley and Sons, New York.
  52. Roberts, T.M. and Azizian, Z.G. (1985), "Strength of perforated plates subjected to in-plane loading", Thin Wall. Struct., 2(2), 153-164. https://doi.org/10.1016/0263-8231(84)90009-0
  53. Rockey, K.C., Anderson, R.G. and Cheung, Y.K. (1967), "The behavior of square shear webs having circular hole", Proceedings of the international conference on thin walled structures, Swansea, London, Crosby Lockwood.
  54. Sabir, A.B. and Davies, T.G. (1997), "Natural frequencies of square plates with reinforced central holes subjected to inplane loads", Thin Wall. Struct., 28, 337-353 https://doi.org/10.1016/S0263-8231(97)00051-7
  55. Saleem, M., Toubal, L., Zitoune, R. and Bougherara, H. (2013), "Investigating the effect of machining processes on the mechanical behavior of composite plates with circular holes", Compos. Part A: Appl. Sci. Manuf., 55, 169-177. https://doi.org/10.1016/j.compositesa.2013.09.002
  56. Savin, G.N. (1961), Stress Concentration Around Holes, Pergamon Press, New York.
  57. Shakerley, T.M. and Brown, C.J. (1996), "Elastic buckling of plates with eccentrically positioned rectangular perforations", Int. J. Mech. Sci., 38(8-9), 825-838. https://doi.org/10.1016/0020-7403(95)00107-7
  58. Shanmugam, N.E. and Narayanan, R. (1982), "Elastic buckling of perforated square plates for various loading and edge conditions", Proceedings of the International Conference on Finite Element Methods, Gordon and Breach, Shanghi, China, 241-245.
  59. Shanmugam, N.E., Lian, V.T. and Thevendran, V. (2002), "Finite element modeling of plate girders with web openings", Thin-Walled Struct., 40 (5), 443-464. https://doi.org/10.1016/S0263-8231(02)00008-3
  60. Shanmugam, N.E., Thevendran, V. and Tan, Y.H. (1999), "Design formula for axially compressed perforated plates", Thin Wall. Struct., 34(1), 1-20. https://doi.org/10.1016/S0263-8231(98)00052-4
  61. She, C.M. and Guo, W.L. (2007), "Three-dimensional stress concentrations at elliptic holes in elastic isotropic plates subjected to tensile stress", Int. J. Fatig., 29, 330-335. https://doi.org/10.1016/j.ijfatigue.2006.03.012
  62. Sivakumar, K., Iyengar, N.G.R. and Deb, K. (1999a), "Free vibration of laminated composite plates with cutout", J. Sound Vib., 221,443-470. https://doi.org/10.1006/jsvi.1998.2034
  63. Sivakumar, K., Iyengar, N.G.R. and Deb, K. (1999b), "Optimum design of laminated composite plates with cutouts undergoing large amplitude oscillations", Adv. Compos. Mater., 8, 295-316. https://doi.org/10.1163/156855199X00290
  64. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, 3rd Edition, McGraw-Hill, New York.
  65. Toshihiro, I. and Kazyu, M. (1980), "Stress concentrations in a plate with two unequal circular holes", Int. J. Eng. Sci., 18, 1077-1090. https://doi.org/10.1016/0020-7225(80)90091-9
  66. Toshihiro, I. and Kazyu, M. (1980), "Stress concentrations in a plate with two unequal circular holes", Int. J. Eng. Sci., 18, 1077-1090. https://doi.org/10.1016/0020-7225(80)90091-9
  67. Woo, H.Y., Leissa, A.W. and Kang, J.H. (2014), "Exact solutions for stresses, strains, displacements, and stress concentration factors of a perforated rectangular plate by a circular hole subjected to in-plane bending moment on two opposite edges", J. Eng. Mech., 140(6), 1-8. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000641
  68. Yang, B. and Park, D.H. (1999), "Analysis of plates with curved boundaries using isoparametric strip distributed transfer functions", Int. J. Numer. Meth. Eng., 44, 131-46. https://doi.org/10.1002/(SICI)1097-0207(19990110)44:1<131::AID-NME501>3.0.CO;2-J
  69. Yang, B. and Zhou, J. (1996), "Semi-analytical solution of 2-D elasticity problems by the strip distributed transfer function method", Int. J. Solid. Struct., 33, 3983-4005. https://doi.org/10.1016/0020-7683(95)00221-9
  70. Yang, L.H. and He, Y.Z. (2002), "Stress field analysis for infinite plate with rectangular opening", J. Harbin Eng. Univ., 23, 106-110. (in Chinese)
  71. Yang, Z., Kim, C.B., Cho, C. and Beom, H.G. (2008), "The concentration of stress and strain in finite thickness elastic plate containing a circular hole", Int. J. Solid. Struct., 45, 713-731. https://doi.org/10.1016/j.ijsolstr.2007.08.030
  72. Yu, P.S., Guo, W.L., She, C.M. and Zhao, J.H. (2008), "The influence of Poisson's ratio on thickness-dependent stress concentration at elliptic holes in elastic plates", Int. J. Fatig., 30, 165-171. https://doi.org/10.1016/j.ijfatigue.2007.02.007
  73. Zhang, T., Liu, T.G., Zhao, Y. and Liu, J.X. (2002), "Analysis of stress field of finite plates weakened by holes', J. Huazhong Univ. Sci. Tech., 30, 87-89. (in Chinese)

Cited by

  1. Mathematical modeling of planar physically nonlinear inhomogeneous plates with rectangular cuts in the three-dimensional formulation vol.232, pp.12, 2021, https://doi.org/10.1007/s00707-021-03096-0