DOI QR코드

DOI QR Code

Elastic distortional buckling of cold-formed steel Z-Beams with stiffened holes using reduced thickness

  • Nasam S. Khater (Department of Structural Engineering, Faculty of Engineering, Tanta University) ;
  • Mahmoud H. El-Boghdadi (Department of Structural Engineering, Faculty of Engineering, Tanta University) ;
  • Nashwa M. Yossef (Department of Structural Engineering, Faculty of Engineering, Tanta University)
  • Received : 2023.04.18
  • Accepted : 2024.04.22
  • Published : 2024.05.10

Abstract

For several reasons, cold-formed steel (CFS) beams are often manufactured with holes. Nevertheless, because of holes, the reduction in the web area causes a decrease in the bending strength. Edge stiffeners are presently added around the holes to improve the bending strength of flexural members. Therefore, this research studies CFSZ-beams with stiffened holes and investigates how edge stiffener affects bending strength and failure modes. Nonlinear analysis was carried out using ABAQUS software and the developed finite element (FE) model was verified against tests from previous studies. Using the verified FE model, a parametric study of 104 FE models was conducted to investigate the influence of key parameters on bending strength of Z- sections. The results indicated that the effect of holes is less noticeable in very thin Z-sections. Moreover, adding edge stiffeners around the holes improves the flexural capacity of Z-beams and sometimes restores the original bending capacity. Because the computational techniques used to solve the CFS buckling mode with stiffened holes are still unclear, a numerical method using constrained and unconstrained finite strip method (CUFSM) software was proposed to predict the elastic distortional buckling moment for a wide variety of CFSZ-sections with stiffened holes. A numerical method with two procedures was applied and validated. Upon comparison, the numerical method accurately predicted the distortional buckling moment of CFS Z-sections with stiffened holes.

Keywords

References

  1. ABAQUS (2008), ABAQUS Standard User's Manual. Retrieved from Providence, RI, USA:
  2. Besevic, M. (2012), "Experimental investigation of residual stresses in cold formed steel sections", Steel Compos. Struct., 12(6), 465-489. https://doi.org/10.12989/scs.2012.12.6.465.
  3. Chandramohan, D.L., Roy, K., Fang, Z., Beulah Gnana Ananthi, G. and Lim, J.B.P. (2024), "Numerical investigation of cold-formed steel channels with edge-stiffened and unstiffened elongated web holes under shear", Thin-Wall. Struct., 196, 111472. https://doi.org/10.1016/j.tws.2023.111472.
  4. Cold-Formed Steel Structures (2005), In AS/NZS 4600:2005: Australian/New Zealand StandardTM.
  5. Dai, Y., Roy, K., Fang, Z., Chen, B., Raftery, G.M. and Lim, J.B. P. (2022), "A novel machine learning model to predict the moment capacity of cold-formed steel channel beams with edge-stiffened and un-stiffened web holes", J. Build. Eng., 53, 104592. https://doi.org/10.1016/j.jobe.2022.104592.
  6. De'Nan, F., Keong, C.K., Hashim, N.S. and Yuting, N. (2017), "A numerical study on shear buckling capacity of Z-section steel purlin with opening", AIP Conference Proceedings.
  7. EN 1993-1-3. (2006), Eurocode 3 - Design of Steel Structures - Part 1-3: General Rules In Supplementary Rules for Cold-Formed Members and Sheeting.
  8. Garifullin, M., Trubina, D. and Vatin, N. (2015), "Local buckling of cold-formed steel members with edge stiffened holes", Appl. Mech. Mater., 725-726(October), 697-702. https://doi.org/10.4028/www.scientific.net/amm.725-726.697.
  9. Grey, C.N. and Moen, C.D. (2011), "Elastic buckling simplified methods for cold-formed columns and beams with edge-stiffened holes", Structural Stability Research Council Annual Stability Conference 2011, ASC.
  10. Haidarali, M.R. and Nethercot, D.A. (2011), "Finite element modelling of cold-formed steel beams under local buckling or combined local/distortional buckling", Thin-Wall. Struct., 49(12), 1554-1562. https://doi.org/10.1016/j.tws.2011.08.003.
  11. Hussein, A.B. and Hussein, D.B. (2024), "Effects of lip length and inside radius-to-thickness ratio on buckling behavior of cold-formed steel C-sections", Buildings, 14(3), 587.
  12. Kanthasamy, E., Thirunavukkarasu, K., Poologanathan, K., Gatheeshgar, P., Todhunter, S., Suntharalingam, T. and Fareedh Muhammadh Ishqy, M. (2022)m "Shear behaviour of doubly symmetric rectangular hollow flange beam with circular edge-stiffened openings", Eng. Struct., 250, 113366. https://doi.org/10.1016/j.engstruct.2021.113366.
  13. Karmazinova, M. (2013), "Lateral flexural-torsion buckling of thin-walled cold-formed steel beams with holes-design resistance evaluation based on test results", Appl. Mech. Mater., 368-370(1), 1683-1687. https://doi.org/10.4028/www.scientific.net/amm.368-370.1683.
  14. Lawson, R.M. and Basta, A. (2019), "Deflection of C section beams with circular web openings", Thin-Wall. Struct., 134, 277-290. https://doi.org/10.1016/j.tws.2018.10.010.
  15. Ling, J.Y., Kong, S.L. and De'nan, F. (2015), "Numerical study of buckling behaviour of cold-formed C-channel steel purlin with perforation", Procedia Eng., 125, 1135-1141. https://doi.org/10.1016/j.proeng.2015.11.140.
  16. Liu, C. and Duan, L. (2023), "Analytical prediction of the distortional buckling loads for cold-formed channel beams with edge-stiffened rectangular web openings", Buildings, 13(1), 101. https://www.mdpi.com/2075-5309/13/1/101. 101
  17. Mathivanan, K., Santhi, M.H. and Campus, C. (2013), "FE analysis of hollow flanged cold-formed steel 'z' beams", Int. J. Civil Eng. Appl., 1, 1-6.
  18. Moen, C. D., & Schafer, B. W. (2010). Extending direct strength design to cold-formed steel beams with holes. Paper presented at the 20th International Specialty Conference on Cold-Formed Steel Structures, St. Louis, Missouri, USA, November 2010.
  19. Moen, C.D. and Yu, C. (2010), "Elastic buckling of thin-walled structural components with edge-stiffened holes", Structures, Structural Dynamics, and Materials Conference, Orlando, Florida.
  20. Moen, C.D., Igusa, T. and Schafer, B.W. (2008), "Prediction of residual stresses and strains in cold-formed steel members", Thin-Wall. Struct., 46(11), 1274-1289. https://doi.org/10.1016/j.tws.2008.02.002.
  21. Perampalam, G., Poologanathan, K., Gunalan, S., Tsavdaridis, K. And Nagaratnam, B. (2019), "Flexural behaviour of optimised cold-formed steel beams with sleeve stiffened web openings", The 10th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka.
  22. Pham, C.H. and Hancock, G.J. (2013), "Experimental investigation and direct strength design of high-strength, complex C-sections in pure bending", J. Struct. Eng., 139(11), 1842-1852. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000736.
  23. S100-16 A.S. (2016), In North American Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute.
  24. Schafer, B.W. (2008), "Review: The direct strength method of cold-formed steel member design", J. Construct. Steel Res., 64(7), 766-778. https://doi.org/10.1016/j.jcsr.2008.01.022.
  25. Schafer, B.W. (2019), "Advances in the direct strength method of cold-formed steel design", Thin-Wall. Struct., 140, 533-541. https://doi.org/10.1016/j.tws.2019.03.001.
  26. Schafer, B.W. and Pekoz, T. (1998), "Computational modeling of cold-formed steel: Characterizing geometric imperfections and residual stresses", J. Construct. Steel Res., 47(3), 193-210. https://doi.org/10.1016/S0143-974X(98)00007-8.
  27. Schafer, B.W., Li, Z. and Moen, C.D. (2010), "Computational modeling of cold-formed steel", Thin-Wall. Struct., 48(10), 752-762. https://doi.org/10.1016/j.tws.2010.04.008.
  28. Shafer, B. (2006). CUFSM.
  29. Uzzaman, A., Lim, J.B.P., Nash, D. and Young, B. (2017), "Effects of edge-stiffened circular holes on the web crippling strength of cold-formed steel channel sections under one-flange loading conditions", Eng. Struct., 139, 96-107. http://dx.doi.org/10.1016/j.engstruct.2017.02.042.
  30. Ye, J., Mojtabaei, S.M., Hajirasouliha, I., Shepherd, P. and Pilakoutas, K. (2018), "Strength and deflection behaviour of cold-formed steel back-to-back channels", Eng. Struct., 177, 641-654. https://doi.org/10.1016/j.engstruct.2018.09.064.
  31. Yousefi, A.M., Lim, J.B.P., Uzzaman, A., Lian, Y., Clifton, G.C. and Young, B. (2016), "Web crippling strength of cold-formed stainless steel lipped channel-sections with web openings subjected to interior-one-flange loading condition", Steel Compos. Struct., 21(3), 629-659. https://doi.org/10.12989/scs.2016.21.3.629.
  32. Yousefi, A.M., Uzzaman, A., Lim, J.B.P., Clifton, G.C. and Young, B. (2017), "Numerical investigation of web crippling strength in cold-formed stainless steel lipped channels with web openings subjected to interior-two-flange loading condition", Steel Compos. Struct., 23(3), 363-383. https://doi.org/10.12989/scs.2017.23.3.363.
  33. Yu, C. (2012), "Cold-formed steel flexural member with edge stiffened holes: Behavior, optimization, and design", J. Construct. Steel Res., 71, 210-218. https://doi.org/10.1016/j.jcsr.2011.09.008.
  34. Yu, N.T., Kim, B., Yuan, W.B., Li, L.Y. and Yu, F. (2019a), "An analytical solution of distortional buckling resistance of cold-formed steel channel-section beams with web openings", Thin-Wall. Struct., 135, 446-452. https://doi.org/10.1016/j.tws.2018.11.012.
  35. Yu, W.-W., LaBoube, R.A. and Chen, H. (2019b), Cold-Formed Steel Design, John Wiley & Sons, Inc.
  36. Yuan, W.B., Yu, N.T. and Li, L.Y. (2017), "Distortional buckling of perforated cold-formed steel channel-section beams with circular holes in web", Int. J. Mech. Sci., 126, 255-260. https://doi.org/10.1016/j.ijmecsci.2017.04.001.
  37. Zhao, J., Sun, K., Yu, C. and Wang, J. (2019), "Tests and direct strength design on cold-formed steel channel beams with web holes", Eng. Struct., 184, 434-446. https://doi.org/10.1016/j.engstruct.2019.01.062.