• Title/Summary/Keyword: Structural Friction

Search Result 553, Processing Time 0.026 seconds

Nonlinear analysis of RC beams strengthened by externally bonded plates

  • Park, Jae-Guen;Lee, Kwang-Myong;Shin, Hyun-Mock;Park, Yoon-Je
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.119-134
    • /
    • 2007
  • External bonding of steel or FRP plates to reinforced concrete (RC) structures has been a popular method for strengthening RC structures; however, unexpected premature failure often occurs due to debonding between the concrete and the epoxy. We proposed a Coulomb criterion with a constant failure surface as the debonding failure criterion for the concrete-epoxy interface. Diagonal shear bonding tests were conducted to determine the debonding properties that were related to the failure criterion, such as the angle of internal friction and the coefficient of cohesion. In addition, an interface element that utilized the Coulomb criterion was implemented in a nonlinear finite element analysis program to simulate debonding failure behavior. Experimental studies and numerical analysies on RC beams strengthened by an externally bonded steel or FRP plate were used to determine the range of the coefficient of cohesion. The results that were presented prove that premature failure loads of strengthened RC beams can be predicted with using the bonding properties and the finite element program with including the proposed Coulomb criterion.

Evaluation of monotonic and cyclic behaviour of geotextile encased stone columns

  • Ardakani, Alireza;Gholampoor, Naeem;Bayat, Mahdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Stone column installation is a convenient method for improvement of soft ground. In very soft clays, in order to increase the lateral confinement of the stone columns, encasing the columns with high stiffness and creep resistant geosynthetics has proved to be a successful solution. This paper presents the results of three dimensional finite element analyses for evaluating improvement in behaviour of ordinary stone columns (OSCs) installed in soft clay by geotextile encasement under monotonic and cyclic loading by a comprehensive parametric study. The parameters include length and stiffness of encasement, types of stone columns (floating and end bearing), frictional angle and elastic modulus of stone column's material and diameter of stone columns. The results indicate that increasing the stiffness of encasement clearly enhances cyclic behaviour of geotextile encased stone columns (GESCs) in terms of reduction in residual settlement. Performance of GESCs is less sensitive to internal friction angle and elasticity modulus of column's materials in comparison with OSCs. Also, encasing at the top portion of stone column up to triple the diameter of column is found to be adequate in improving its residual settlement and at all loading cycles, end bearing columns provide much higher resistance than floating columns.

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • Jeong, Won-Seon;Seo, Yeong-Gyo;Kim, Hong-Jin;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

Development of Permanent Magnet Synchronous Motor for High-speed Electric Multiple Unit - 400km/h eXperimen (차세대 고속전철용 영구자석동기 전동기 개발)

  • Kim, Jung-Chul;Kim, Bong-Chul;Park, Yeong-Ho;Kim, Chul-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.470-474
    • /
    • 2010
  • Up until now, power centralized trains have been produced due to the maintenance convenience and comfortableness, but there are some problems, such as limitation of viscosity and maintenance difficulty of railroad due to recently increasing axle mass. In order to improve the problems, power decentralized trains have been developed to improve traction power. In the case of using electrical braking system, it is possible to improve braking friction power. Induction motors have been developed for power decentralized high speed train because of less structural defection, and low maintenance and production cost. However, induction motors have limitations, such as assuring enough power capacity and efficiency with reduced size. PMSM (Permanent magnet synchronous motor) have been newly developed to improve shortcomings of induction motors. The PMSM can be produced small and light weighted. Also if the PMSM and induction motors have the same size and power capacity, the PMSM have better power efficiency. In this pater, the prototype and modified type of PMSM for "High-speed Electric Multiple Unit-400km/h eXperimmen" will be introduced.

  • PDF

Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe

  • Zahrai, Seyed Mehdi;Cheraghi, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Analytical and experimental studies of the innovative pipe in pipe damper have been recently investigated by the authors. In this paper, by adding lead or zinc infill or slit diaphragm inside the inner pipe, it is tried to increase the equivalent viscous damping ratio improving the cyclic performance of the recently proposed multi-level control system. The damper consists of three main parts including the outer pipe, inner pipe and added complementary damping part. At first plastic deformations of the external pipe, then the internal pipe and particularly the added core and friction between them make the excellent multi-level damper act as an improved energy dissipation system. Several kinds of added lead or zinc infill and also different shapes of slit diaphragms are modeled inside the inner pipe and their effectiveness on hysteresis curves are investigated with nonlinear static analyses using finite element method by ABAQUS software. Results show that adding lead infill has no major effect on the damper stiffness while zinc infill and slit diaphragm increase damper stiffness sharply up to more than 10 times depending on the plate thickness and pipe diameter. Besides, metal infill increases the viscous damping ratio of dual damper ranging 6-9%. In addition, obtained hysteresis curves show that the multi-level control system as expected can reliably dissipate energy in different imposed energy levels.

Soft computing-based slope stability assessment: A comparative study

  • Kaveh, A.;Hamze-Ziabari, S.M.;Bakhshpoori, T.
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.257-269
    • /
    • 2018
  • Analysis of slope stability failures, as one of the complex natural hazards, is one of the important research issues in the field of civil engineering. Present paper adopts and investigates four soft computing-based techniques for this problem: Patient Rule-Induction Method (PRIM), M5' algorithm, Group Method of data Handling (GMDH) and Multivariate Adaptive Regression Splines (MARS). A comprehensive database consisting of 168 case histories is used to calibrate and test the developed models. Six predictive variables including slope height, slope angle, bulk density, cohesion, angle of internal friction, and pore water pressure ratio were considered to generate new models. The results of test studies are used for feasibility, effectiveness and practicality comparison of techniques with each other, and with the other available well-known methods in the literature. Results show that all methods not only are feasible but also result in better performance than previously developed soft computing based predictive models and tools. It is shown that M5' and PRIM algorithms are the most effective and practical prediction models.

Optimization and Analysis of Output Pinion Design for Worm Gear Reducer (워엄기어 감속기의 출력피니언 최적설계와 해석)

  • Cho, Seonghyun;Kim, Hyeonkyeong;Kim, Dongseon;Zhen, Qin;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.108-113
    • /
    • 2020
  • Pinions are generally heavy and integrated with a shaft. Thus, fabricating a pinion is a material- and machining-intensive task characterized by low productivity. Contact of the output pinion with a sliding surface or a cloud contact causes loss of power because of friction. Consequently, the output pinion undergoes considerable wear and tear at its ends, which adversely affects the overall transmission efficiency of decelerators. To improve transmission efficiency and extend gear life, an optimum output pinion design is required. To this end, in this study, an output pinion for worm gear decelerators was designed and optimized by means of product verification through prototyping and performance evaluation to improve gear life and productivity. The optimized design was validated and subjected to structural analysis.

A Study on Material Degradation and Fretting Fatigue Behavior (재질 열화와 프레팅 피로거동 평가에 관한 연구)

  • Kwon, Jae-Do;Choi, Sung-Jong;Sung, Sang-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.157-162
    • /
    • 2001
  • Fretting is a potential degradation mechanism of structural components and equipments exposed to various environments and loading conditions. The fretting degradation, for example, can be observed in equipments of nuclear, fossil as well as petroleum chemical plants exposed to special environments and loading conditions. It is well known that a cast stainless steel(CF8M) used in a primary reactor coolant(RCS) degrades seriously when that material is exposed to temperature range ken $290^{\circ}C{\sim}390^{\circ}C$ for long period. This degradation can be resulted into a catastrophical failure of components. In the present paper, the characteristics of the fretting fatigue are investigated using the artificially aged CF8M specimen. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 1800hr at $430^{\circ}C$ respectively. Through the investigations, the simple fatigue endurance limit of the virgin specimen is not altered from that obtained from the fatigue tests imposed the fretting fatigue. The similar tests are performed using the degraded specimen. The results are not changed from those of the virgin specimen. The significant effects of fretting fatigue imposed on both virgin and degraded specimen on the fatigue strength are not found.

  • PDF

The Evaluation of Fretting Fatigue Behavior on Rotary Bending Fatigue for Railway Axle Material (회전굽힘 피로 하에서의 철도 차축재료 프레팅 피로거동 평가)

  • Choi, Sung-Jong;Kwon, Jong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.74-82
    • /
    • 2010
  • Fretting damage can be observed in automobile and railway vehicle, fossil and nuclear power plant, aircraft etc. In the present study, railway axle material RSA1 used for evaluation of fretting fatigue life. Plain and fretting fatigue tests were carried out using rotary bending fatigue tester with proving ring and bridge type contact pad. Through these test, the following results are obtained: 1) it is found that the fretting fatigue limit of standard specimen decreased about 37% compared to the plain fatigue limit. 2) The early crack of Shinkansen type specimens initiated in contact area and final fractured below samp=214 MPa. 3) The early crack of all TGV type specimens initiated in rounded area and fractured. 4) Tire tracks and rubbed scars were observed in the oblique crack region and fatigue crack growth region of fracture surface. 5) The wear debris is observed on the contact surface, and oblique cracks at an earlier stage are initiated in contact area. These results can be used as useful data in a structural integrity evaluation of railway axle.

A Study on the Antiabrasion of the Aircraft Carbon Disk Brake (항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구)

  • Lee, Jang-Hyun;Yum, Hyun-Ho;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.