• 제목/요약/키워드: Structural Flexibility

검색결과 582건 처리시간 0.027초

Structural flexibility of Escherichia coli IscU, the iron-sulfur cluster scaffold protein

  • Kim, Bokyung;Kim, Jin Hae
    • 한국자기공명학회논문지
    • /
    • 제24권3호
    • /
    • pp.86-90
    • /
    • 2020
  • Iron-sulfur (Fe-S) clusters are one of the most ancient yet essential cofactors mediating various essential biological processes. In prokaryotes, Fe-S clusters are generated via several distinctive biogenesis mechanisms, among which the ISC (Iron-Sulfur Cluster) mechanism plays a house-keeping role to satisfy cellular needs for Fe-S clusters. The Escherichia coli ISC mechanism is maintained by several essential protein factors, whose structural characterization has been of great interest to reveal mechanistic details of the Fe-S cluster biogenesis mechanisms. In particular, nuclear magnetic resonance (NMR) spectroscopic approaches have contributed much to elucidate dynamic features not only in the structural states of the protein components but also in the interaction between them. The present minireview discusses recent advances in elucidating structural features of IscU, the key player in the E. coli ISC mechanism. IscU accommodates exceptional structural flexibility for its versatile activities, for which NMR spectroscopy was particularly successful. We expect that understanding to the structural diversity of IscU provides critical insight to appreciate functional versatility of the Fe-S cluster biogenesis mechanism.

Distribution of strength and stiffness in asymmetric wall type system buildings considering foundation flexibility

  • Atefatdoost, Gh.R.;Shakib, H.;JavidSharifi, B.
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.281-292
    • /
    • 2017
  • Architecture constraints in buildings may typically cause irregularities in the distribution of stiffness and mass and consequently causes non-compliance of centers of mass, stiffness and strength. Such buildings are known as asymmetric buildings the distribution of strength and stiffness is one of whose main challenges. This distribution is more complicated for concrete buildings with RC shear walls in which stiffness and strength are interdependent parameters. The flexibility under the foundation is another subject that can affect this distribution due to the variation of dynamic properties of the structure and its constituting elements. In this paper, it is attempted to achieve an appropriate distribution pattern by expressing the effects of foundation flexibility on the seismic demand of concrete shear walls and also evaluate the effects of this issue on strength and stiffness distribution among lateral force resistant elements. In order to understand the importance of flexibility in strength and stiffness distribution for an asymmetric building in different conditions of under-foundation flexibility, the assigned value to each of the walls is numerically calculated and eventually a procedure for strength and stiffness distribution dependencies on flexibility is provided.

얇은 벽 보를 이용한 초기 받음각이 있는 테이퍼형 복합재료 항공기 날개의 구조 모델링 (Structural Modelling of Tapered Composite Aircraft Wings with Initial Angle of Attack using Thin-Walled Beam)

  • 김근택;송오섭
    • 항공우주시스템공학회지
    • /
    • 제3권2호
    • /
    • pp.1-11
    • /
    • 2009
  • A structural modelling for study on dynamic characteristics of tapered composite aircraft wings in the form of thin-walled beam is presented. The proposed structural model includes effects of transverse shear flexibility exhibited by the advanced composite materials and warping restraint characterizing elastic anisotropy and induced structural couplings. The complex effects of these factors could have a role in more efficient analysis on those structural models.

  • PDF

Effects of diaphragm flexibility on the seismic design acceleration of precast concrete diaphragms

  • Zhang, Dichuan;Fleischman, Robert B.;Lee, Deuckhang
    • Computers and Concrete
    • /
    • 제25권3호
    • /
    • pp.273-282
    • /
    • 2020
  • A new seismic design methodology for precast concrete diaphragms has been developed and incorporated into the current American seismic design code. This design methodology recognizes that diaphragm inertial forces during earthquakes are highly influenced by higher dynamic vibration modes and incorporates the higher mode effect into the diaphragm seismic design acceleration determination using a first mode reduced method, which applies the response modification coefficient only to the first mode response but keeps the higher mode response unreduced. However the first mode reduced method does not consider effects of diaphragm flexibility, which plays an important role on the diaphragm seismic response especially for the precast concrete diaphragm. Therefore this paper investigated the effect of diaphragm flexibility on the diaphragm seismic design acceleration for precast concrete shear wall structures through parametric studies. Several design parameters were considered including number of stories, diaphragm geometries and stiffness. It was found that the diaphragm flexibility can change the structural dynamic properties and amplify the diaphragm acceleration during earthquakes. Design equations for mode contribution factors considering the diaphragm flexibility were first established through modal analyses to modify the first mode reduced method in the current code. The modified first mode reduced method has then been verified through nonlinear time history analyses.

주택특성 변수의 시장 균형과 공간 변이성 (Market Equilibrium and Spatial Variability in the Value of Housing Attributes)

  • 조성훈;김승규
    • 자원ㆍ환경경제연구
    • /
    • 제18권2호
    • /
    • pp.311-344
    • /
    • 2009
  • 본 연구는 각각의 세분화된 부동산 시장에서 주택의 특성들이 시장 균형점을 찾을 수 있는지에 대한 가정을 실증 분석하였다. 주택의 건축 특성 등과 같이 공급 탄력적인 변수들은 주택의 주변 환경 등과 같은 공급 비탄력적인 변수에 비하여 시장 균형점에 더 가까운 것으로 나타났다. 또한, 주택 거주자의 평균 거주 기간으로 측정한 거주자의 이동 가능성이 높은 부동산 시장에서 공급 탄력적인 변수들이 공급 비탄력적인 변수들에 비해 시장 균형점에 더 가까운 결과를 보였다. 따라서 주택 시장에서 공급 탄력성과 거주자의 이동 가능성이 시장 균형점에 필요한 조건으로 파악되었다.

  • PDF

유연도행렬 및 질량관성행렬의 축약을 이용한 결합체결 구조부의 등가 계수행렬 요소 모델링 (Equivalent Coefficient Element Modelling for a Jointed Structure Using the Reduction of Flexibility and Mass Matrices)

  • 최영휴;신중호;정원지;박종권;조재혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.655-660
    • /
    • 2000
  • This paper presents the construction of consistent coefficient matrix elements for jointed structures using the reduction of flexibility and mass matrices. The reduced flexibility coefficient matrix hat little structural complexity than Guyan's stiffness matrix reduction since the only element of the original matrix, corresponding to the selected nodal degrees of freedom, contributes. The proposed method was applied to building equivalent coefficient matrices for a clamp jointed structure in finite element modal analysis of a cantilevered beam. The theoretical analysis results were compared with those experimental modal analysis, Comparison of both shows good agreement each other.

  • PDF

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

Closed form solutions for element equilibrium and flexibility matrices of eight node rectangular plate bending element using integrated force method

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.;Othamon, Ismail
    • Structural Engineering and Mechanics
    • /
    • 제40권1호
    • /
    • pp.121-148
    • /
    • 2011
  • Closed form solutions for equilibrium and flexibility matrices of the Mindlin-Reissner theory based eight-node rectangular plate bending element (MRP8) using Integrated Force Method (IFM) are presented in this paper. Though these closed form solutions of equilibrium and flexibility matrices are applicable to plate bending problems with square/rectangular boundaries, they reduce the computational time significantly and give more exact solutions. Presented closed form solutions are validated by solving large number of standard square/rectangular plate bending benchmark problems for deflections and moments and the results are compared with those of similar displacement-based eight-node quadrilateral plate bending elements available in the literature. The results are also compared with the exact solutions.

Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation

  • Limkatanyu, Suchart;Kuntiyawichai, Kittisak;Spacone, Enrico;Kwon, Minho
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.39-53
    • /
    • 2012
  • This paper presents an alternative way to derive the exact element stiffness matrix for a beam on Winkler foundation and the fixed-end force vector due to a linearly distributed load. The element flexibility matrix is derived first and forms the core of the exact element stiffness matrix. The governing differential compatibility of the problem is derived using the virtual force principle and solved to obtain the exact moment interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix using the exact moment interpolation functions. The so-called "natural" element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler foundation.

Out of plane vibrations of thin-walled curved beams considering shear flexibility

  • Cortinez, V.H.;Piovan, M.T.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.257-272
    • /
    • 1999
  • In this paper a simple finite element is proposed for analyzing out of plane vibration of thin walled curved beams, with both open and closed sections, considering shear flexibility. The present element is obtained from a variational formulation governing the dynamics of a three-dimensional elastic body in which the stress tensor as well as the displacements are variationally independent. The element has two nodes with four degrees of freedom in each. Numerical examples for the first six frequencies are performed in order to assess the accuracy of the finite element formulation and to show the influence of the shear flexibility on the dynamics of the member.