• Title/Summary/Keyword: Structural Equations

Search Result 2,071, Processing Time 0.023 seconds

Buckling Loads and Post-Buckling Behavior of Linear Tapered Columns (선형 변단면 기둥의 좌굴하중 및 후좌굴 거동)

  • Lee Tae-Eun;Ahn Dae-Soon;Lee Seung-Woo;Park Kwang-Kyou
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.689-696
    • /
    • 2006
  • This paper deals with the geometrical non-linear analyses of the buckled columns. Differential equations governing elasticas of the buckled columns are derived, in which both effects of taper type and shear deformation are included. Three kinds of taper types such as breadth, depth and square tapers are considered. Differential equations are solved numerically to obtain the elasticas and buckling loads of such columns. End constraint of both clamped ends and both hinged ends are considered. The effects of shear deformation on the elastica of the buckled column and buckling load of column are investigated extensively. Experimental studies are presented that complement theoretical results of non-linear responses of the elasticas.

  • PDF

Recent Developments in Multibody Dynamics

  • Schiehlen Werner
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.227-236
    • /
    • 2005
  • Multibody system dynamics is based on classical mechanics and its engineering applications originating from mechanisms, gyroscopes, satellites and robots to biomechanics. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most convenient. Recent developments in multibody dynamics are identified as elastic or flexible systems, respectively, contact and impact problems, and actively controlled systems. Based on the history and recent activities in multibody dynamics, recursive algorithms are introduced and methods for dynamical analysis are presented. Linear and nonlinear engineering systems are analyzed by matrix methods, nonlinear dynamics approaches and simulation techniques. Applications are shown from low frequency vehicles dynamics including comfort and safety requirements to high frequency structural vibrations generating noise and sound, and from controlled limit cycles of mechanisms to periodic nonlinear oscillations of biped walkers. The fields of application are steadily increasing, in particular as multibody dynamics is considered as the basis of mechatronics.

Vibration and Dynamic Stability of Pipes Conveying Fluid on Elastic Foundations

  • Ryu, Bong-Jo;Ryu, Si-Ung;Kim, Geon-Hee;Yim, Kyung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2148-2157
    • /
    • 2004
  • The paper deals with the vibration and dynamic stability of cantilevered pipes conveying fluid on elastic foundations. The relationship between the eigenvalue branches and corresponding unstable modes associated with the flutter of the pipe is thoroughly investigated. Governing equations of motion are derived from the extended Hamilton's principle, and a numerical scheme using finite element methods is applied to obtain the discretized equations. The critical flow velocity and stability maps of the pipe are obtained for various elastic foundation parameters, mass ratios of the pipe, and structural damping coefficients. Especially critical mass ratios, at which the transference of the eigenvalue branches related to flutter takes place, are precisely determined. Finally, the flutter configuration of the pipe at the critical flow velocities is drawn graphically at every twelfth period to define the order of the quasi-mode of flutter configuration.

Numerical analysis of interference galloping of two identical circular cylinders

  • Blazik-Borowa, E.;Flaga, A.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.243-253
    • /
    • 1998
  • The paper deals with numerical analysis of interference galloping of two elastically supported circular cylinders of equal diameters. The basis of the analysis is quasi-steady model of this phenomenon. The model assumes that both cylinders participate in process of interference galloping and they have two degrees of freedom. The movement of the cylinders is written as a set of four nonlinear differential equations. On the basis of numerical solutions of this equations the authors evaluate the correctness of this quasi-steady model. Then they estimate the dependence of a critical reduced velocity on the Scruton number, turbulence intensity and arrangements of the cylinders.

Exact Static Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Elastic Beams (전단변형을 고려한 비대칭 박벽보의 엄밀한 정적 요소강도행렬)

  • 김남일;곽태영;이준석;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.345-352
    • /
    • 2001
  • Derivation procedures of exact static element stiffness matrix of shear deformable thin-walled straight beams are rigorously presented for the spatial buckling analysis. An exact static element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The buckling loads are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Exact Dynamic Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Beams Subjected to Initial Forces (초기하중을 받는 전단변형을 고려한 비대칭 박벽보의 엄밀한 동적 요소강도행렬)

  • 윤희택;김동욱;김상훈;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.435-442
    • /
    • 2001
  • Derivation procedures of exact dynamic element stiffness matrix of shear deformable nonsymmetric thin-walled straight beams are rigorously presented for the spatial free vibration analysis. An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The natural frequencies are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Free Vibration Analysis of Horizontally Sinusoidal Curved Beams in Cartesian Coordinates (직교 좌표계에 의한 정현형 수평 곡선보의 자유진동 해석)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kang, Hee-Jong;Kim, Kweon-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.11-16
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic, horizontally curved beams with unsymmetric axis are derived in Cartesian coordinates rather than in polar coordinates, in which the effect of torsional inertia is included. Frequencies are computed numerically for the sinusoidal curved beams with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. The convergent efficiency is highly improved under the newly derived differential equations in Cartesian coordinates. The lowest four natural frequency parameters are reported, with and without torsional inertia, as functions of three non-dimensional system parameters: the horizontal rise to chord length ratio, the span length to chord length ratio, and the slenderness ratio.

  • PDF

Designing the Optical Structure of a Multiscale Gigapixel Camera (멀티스케일방식의 기가픽셀카메라의 광학구조설계)

  • Moon, Hee jun;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • We derive 28 optical structural equations based on our two previous theoretical and experimental papers about a gigapixel camera, which were published in 2013 and 2015 respectively. Utilizing these 28 equations, we are able to obtain an integrated understanding of optical structure for a multiscale gigapixel camera system, in addition to obtaining numerical values for structural parameters very directly and easily.

The equivalent second moment of area for the symmetrically tapered compression member (대칭형으로 taper진 압축재의 등가 단면2차모멘트)

  • 김상조;민영숙;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.291-298
    • /
    • 2001
  • When the compression members have the variable cross sections along their member axes, the determination of the elastic critical loads by classical methods becomes impossible and if possible involves complicated calculation only to obtain the approximate values of critical load. In this paper the elastic critical load coefficients of the tapered members with simply supported ends were determined by finite element method. And then the results were represented by simple algebraic equations of two parameters, a( =taper parameter) and m ( = sectional property parameter). One the basis of algebraic equations, the equivalent moment of inertia concept originally proposed by Bleich for a spesific case, are extended to the general cases.

  • PDF

Non-Linear Behavior of Shear Deformable Variable-Arc-Length Beams (전단변형을 고려한 변화곡선길이보의 비선형 거동)

  • 이병구;이태은;김종웅;김영일
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.146-153
    • /
    • 2001
  • In this paper, the governing differential equations for the non-linear behavior of shear deformable variable-arc-length beams subjected to an end moment are derived. The beam model is based on the Bernoulli-Euler beam theory. The Runge-Kutta and Regula-Falsi methods, respectively, are used to integrate the governing differential equations and to compute the beam's rotation at the left end of the beams. Numerical results are compared with existing closed-form and numerical solutions by other methods for cases in which they are available. The characteristic values of deflection curves for various load parameters are calculated and discussed.

  • PDF