• Title/Summary/Keyword: Structural Damping

Search Result 1,234, Processing Time 0.028 seconds

An efficient method for computation of receptances of structural systems with sparse, non-proportional damping matrix (성긴 일반 감쇠행렬을 포함하는 구조물에 대한 효율적인 주파수 응답 계산 방법)

  • Park, Jong-Heuck;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.99-106
    • /
    • 1995
  • Frequency response functions are of great use in dynamic analysis of structural systems. The present paper proposes an efficient method for computation of the frequency rewponse functions of linear structural dynamic models with a sparse, non-proportional damping matrix. An exact condensation procedure is proposed which enables the present method to condense the matrices without resulting in any errors. Also, an iterative scheme is proposed to be able to avoid matrix inversion in computing frequency response matrix. The proposed method is illustrated through a numerical example.

  • PDF

Time Domain based Structural System Identification using Shaking Table Test (진동대 실험을 통한 시간영역에 기반한 시스템 식별)

  • 이상현;민경원;강경수;이명규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.331-338
    • /
    • 2004
  • In this paper, stiffness and damping matrices are experimentally constructed using structural modal information on frequencies, damping ratios and modal vectors, which are obtained by shaking table tests. The acceleration of the shaking table is used as the input signal, and the resulting acceleration of each floor is measured as output signal. The characteristic and limitation of modal information from shaking table test are obtained by Common Based-normalized System Identification(CBSI) technique which is based on time domain information.

  • PDF

High-Performance Damping Device for Suppressing Vibration of Stay Cable (사장 케이블 제진을 위한 고성능 감쇠 장치)

  • Jung Hyung-Jo;Park Chul-Min;Jang Ji-Eun;Park Kyu-Sik;Lee In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.489-496
    • /
    • 2005
  • In this paper, the feasibility of the high-performance damping device vibration suppression of stay cables has been investigated. The proposed damping system consists of a linear viscous damper and a scissor-jack-type toggle linkage. Since the mechanism of the scissor-jack-type toggle linkage amplifies the relative displacement of the linear viscous damper, it is expected that the capacity of the viscous damper used in the scissor-jack-damper energy dissipation system can be reduced without the loss of the control performance. Numerical simulation results demonstrate the efficacy of the damping system employing the scissor-jack-type toggle linkage. Therefore, the proposed damping system could be considered as one of the promising candidates for suppressing vibration of stay cable.

  • PDF

Vibration Control of Smart Laminated Composite Plates Using Piezoceramic Sensor/Actuators and Viscoelastic Material (압전 세라믹 감지기/작동기와 점탄성 재료를 이용한 지능형 복합 적층판의 진동 제어)

  • 강영규;서경민;이시복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.37-42
    • /
    • 2001
  • Active vibration control of laminated composite plates has been carried out to design structure with maximum possible damping capacity, using piezoceramic sensor/actuators and passive constrained-layer damping treatment. The equations of motion are derived for symmetrical, multi-layer laminated plates. The damping ratio(ζ) and modal damping(2ζ$\omega$) of the first bending and torsional modes are calculated by means of iterative complex eigensolution method for both passive and active vibration control. This paper addresses a design strategy of laminated composite plate under structural vibrations.

  • PDF

Analysis of mass and location of proportional damping system using the change of eigenvectors (고유벡터의 변화량에 의한 비례감쇠구조물의 변경질량 및 그 위치 해석)

  • Lee, Jung-Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.191-197
    • /
    • 2010
  • In spite of a large amount of previous research, detail study on modified mass in proportional damping system is not well understood. It is common to predict structural dynamic design parameters due to the change of mass, but to predict the amount of modified mass and the location where the mass is being modified are rarely found in previous literature. Such inverse problem required detail analytical study in order to understand structural modification in proportional damping system. This paper predicts the modified mass and the modified mass location in proportional damping system using sensitivity coefficients and iterative method. The sensitivity coefficients are obtained from the change of eigenvectors due to mass modification. This method is applied to a horizontal beam and three degree of freedoms system. To validate the predicted changing mass and its location, the obtained results are compared to the reanalysis result which shows good agreement.

Eigenderivative Analysis by Modification of Design Parameter in the Proportional Damping System (설계파라미터 변경에 의한 비례 감쇠 구조물의 동특성 변화 해석)

  • Lee, J.Y.;Lee, J.W.;Lee, J.H.;Oh, J.O.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1648-1653
    • /
    • 2003
  • This paper predicts the modified proportional damping structural eigenvectors and eigenvalues due to the change in the mass and stiffness of a proportional damping structure by iterative calculation of the sensitivity coefficient using the original dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom lumped mass model by modifing the mass and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

  • PDF

Viscoelastic Damping Treatment Analysis and Aeroelasticity for Vibration Reductions of a Hingeless Composite Helicopter Rotor System (무힌지 복합재 헬리콥터 로터 시스템의 진동 저감을 위한 점탄성 감쇠처리 해석 및 공탄성 연구)

  • Hwang, Ho-Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.6-14
    • /
    • 2007
  • In this research, vibration reduction and aeroelastic stability of a composite hingeless rotor hub flexure with viscoelastic constrained layer damping treatment(CLDT) were investigated. The composite flexures with viscoelastic CLDT were applied to hingeless rotor system to improve the in-plane stability of the lead-lag motion causing resonance. The modal test was performed and dynamic properties(natural frequency and loss factor) were acquired. Also, complex eigenvalue analysis(SOLlO7) in the NASTRAN structural analysis module was performed and compared with results of the modal test. To insure aeroelastic stability, damping ratio analyses of the hingeless rotor system with CLDT were accomplished at hovering condition due to collective pitch angle changes. Satisfactory results of increasing structural damping and stability were obtained.

  • PDF

Study on the Application of Damping Ratio in the Seismic Performance Evaluation of Concrete Dams (콘크리트 댐 내진성능평가 시 감쇠비 적용 방안 고찰)

  • Jeong-Keun Oh;Yeong-Seok Jeong;Minho Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2023
  • The purpose of this paper is to review the appropriateness of the application method for the value of the damping ratio suggested in the current design standards and evaluation guidelines when evaluating the seismic performance of concrete dams and to suggest improvements. As a result of the study, for the magnitude of the damping ratio in the dynamic elastic analysis, it is necessary to refer to the case of a similar dam in which the magnitude of the earthquake load is similar and the reproducibility of the damping ratio has been verified. Considering this, it is necessary to apply a low damping ratio and consider adding hysteresis damping in case of nonlinear behavior. In addition, since the concrete dam body located on the rock has insignificant radiation attenuation effect, it is not reasonable to increase the damping ratio of the concrete dam body to reflect the radiation damping. Therefore, in order to evaluate the realistic seismic performance of concrete dams, it is necessary to revise the damping ratio-related contents contained in the current dam design standards and evaluation guidelines.

A Method for Checking Missed Eigenvalues in Eigenvalue Analysis with Damping Matrix

  • Jung, Hyung-Jo;Kim, Dong-Hyawn;Lee, In-Won
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • In the case of the non-proportionally damped system such as the soil-structure interaction system, the structural control system and composite structures, the eigenproblem with the damping matrix should be necessarily performed to obtain the exact dynamic response. However, most of the eigenvalue analysis methods such as the subspace iteration method and the Lanczos method may miss some eigenvalues in the required ones. Therefore, the eigenvalue analysis method must include a technique to check the missed eigenvalues to become the practical tools. In the case of the undamped or proportionally damped system the missed eigenvalues can easily be checked by using the well-known Sturm sequence property, while in the case of the non-proportionally damped system a checking technique has not been developed yet. In this paper, a technique of checking the missed eigenvalues for the eigenproblem with the damping matrix is proposed by applying the argument principle. To verify the effectiveness of the proposed method, two numerical examples are considered.

  • PDF

Damping Measurements of Structural Rectangular Beam (구조용 사각 보의 감쇠측정)

  • Ryu, Bong-Jo;Song, Seon-Ho;Yoon, Choong-Sup;Ahn, Byung-Wook;Lee, Young-Yeob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1071-1074
    • /
    • 2006
  • The frequency response functions and loss factors, $\eta$, of structurally hollowed, rectangular, metal cantilever beams have been measured in bending vibrations within low strain amplitudes. The beams were heat treated or fined with aluminum to vary the material conditions. The measured frequency response functions at the end of the cantilevered beam were processed to calculate the structural damping ratios. The results showed that the modal frequencies and damping ratios of heat treated beam are increased due to the increase of beam rigidity with the predictions of the classical beam theory. When the beams are fined with aluminum, however, the frequencies are decreased due to the increase of mass, while the damping ratios are increased. As the agreement between measurement and classical theory is good, the performance of a beam with heat treated or fined with dissimilar material can be duplicated, for industrial and most practical purposes, by the theory developed for an internally damped homogeneous beam.

  • PDF