• 제목/요약/키워드: Structural Conversion

검색결과 323건 처리시간 0.029초

Fructan Biosynthesis by Yeast Cell Factories

  • Hyunjun Ko;Bong Hyun Sung;Mi-Jin Kim;Jung-Hoon Sohn;Jung-Hoon Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1373-1381
    • /
    • 2022
  • Fructan is a polysaccharide composed of fructose and can be classified into several types, such as inulin, levan, and fructo-oligosaccharides, based on their linkage patterns and degree of polymerization. Owing to its structural and functional diversity, fructan has been used in various fields including prebiotics, foods and beverages, cosmetics, and pharmaceutical applications. With increasing interest in fructans, efficient and straightforward production methods have been explored. Since the 1990s, yeast cells have been employed as producers of recombinant enzymes for enzymatic conversion of fructans including fructosyltransferases derived from various microbes and plants. More recently, yeast cell factories are highlighted as efficient workhorses for fructan production by direct fermentation. In this review, recent advances and strategies for fructan biosynthesis by yeast cell factories are discussed.

연료전지용 MXenes의 등장 (Emergence of MXenes for Fuel Cell)

  • 마노즈 카라코티;남상용
    • 공업화학
    • /
    • 제34권2호
    • /
    • pp.99-105
    • /
    • 2023
  • Recently, 2D materials greatly impact in the various applications especially in the energy conversion and storage devices. Among the 2D materials, nowadays researchers are showing their propensity towards the MXenes due to their potential structural and physical properties as well as their use in various applications. Recently, MXenes have been used as filler in polymer electrolytes membranes and as catalytic support to increase the performance of fuel cells (FCs). But this review covers only recent progress and application of MXenes in proton and anion exchange membranes for FCs. Also, this review will provide a significant guidance and broad overview for future research in MXenes based polymer electrolyte membrane for FCs.

염료감응형 태양전지의 저비용 상대전극을 위한 N-doped ZnO 나노입자-탄소나노섬유 복합체 (N-Doped ZnO Nanoparticle-Carbon Nanofiber Composites for Use as Low-Cost Counter Electrode in Dye-Sensitized Solar Cells)

  • 안하림;안효진
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.565-571
    • /
    • 2014
  • Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for $I_3{^-}$ ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current density ($16.3mA/cm^2$), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).

Optimization and improvement about DSSCs efficiency as thickness of TiO2 photoelectrode with Al back-reflector

  • 이용민;황기환;서현진;최현지;이율희;김동인;남상훈;부진효
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.243.1-243.1
    • /
    • 2015
  • To replace the based on silicon solar cells, the third generation solar cells, Dye-sensitized solar cells (DSSCs), is low fabrication than silicon solar cells, environmentally friendly and can be applied to various field. For this reason, the DSSCs have been continuously researched. But DSSCs have one drawback that is the low power conversion efficiency (PCE) than silicon solar cells. To solve the problem, we used the backr-eflector the Al foil that can be easily obtained from the surrounding in order to improve the efficiency of the DSSCs. Easily detachable Al foil back-reflector increases the photocurrent by enhancing the harvesting light because the discarded light is reused. It also leads to enhance the power conversion efficiency (PCE). In addition, we compared with the efficiency of the DSSCs that is applied and does not be applied with back-reflector according to the thickness of the TiO2 photoelectrode. When the back-reflector is applied to DSSCs, the photocurrent is increased. It leads to affect the efficiency. We used to solar simulator and Electrochemical Impedance Spectroscopy (EIS) to confirm the PCE and resistance. The DSSCs were also measured by External Quantum effect (EQE). At the same time, FE-SEM and XRD were used to confirm the thickness of layer and crystal structural of photoelectrode.

  • PDF

Disulfide Bond as a Structural Determinant of Prion Protein Membrane Insertion

  • Shin, Jae Yoon;Shin, Jae Il;Kim, Jun Seob;Yang, Yoo Soo;Shin, Yeon-Kyun;Kim, Kyeong Kyu;Lee, Sangho;Kweon, Dae-Hyuk
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.673-680
    • /
    • 2009
  • Conversion of the normal soluble form of prion protein, PrP ($PrP^C$), to proteinase K-resistant form ($PrP^{Sc}$) is a common molecular etiology of prion diseases. Proteinase K-resistance is attributed to a drastic conformational change from ${\alpha}$-helix to ${\beta}$-sheet and subsequent fibril formation. Compelling evidence suggests that membranes play a role in the conformational conversion of PrP. However, biophysical mechanisms underlying the conformational changes of PrP and membrane binding are still elusive. Recently, we demonstrated that the putative transmembrane domain (TMD; residues 111-135) of Syrian hamster PrP penetrates into the membrane upon the reduction of the conserved disulfide bond of PrP. To understand the mechanism underlying the membrane insertion of the TMD, here we explored changes in conformation and membrane binding abilities of PrP using wild type and cysteine-free mutant. We show that the reduction of the disulfide bond of PrP removes motional restriction of the TMD, which might, in turn, expose the TMD into solvent. The released TMD then penetrates into the membrane. We suggest that the disulfide bond regulates the membrane binding mode of PrP by controlling the motional freedom of the TMD.

Predictive Factors of Sustained Sinus Rhythm and Recurrent Atrial Fibrillation after the Maze Procedure

  • Choi, Jong Bum;Park, Hyun Kyu;Kim, Kyung Hwa;Kim, Min Ho;Kuh, Ja Hong;Lee, Mi-Kyung;Lee, Sam Youn
    • Journal of Chest Surgery
    • /
    • 제46권2호
    • /
    • pp.117-123
    • /
    • 2013
  • Background: We examined perioperative predictors of sustained sinus rhythm (SR) in patients undergoing the Cox maze operation and concomitant cardiac surgery for structural heart disease. Materials and Methods: From October 1999 to December 2008, 90 patients with atrial fibrillation (AF) underwent the Cox maze operation and other concomitant cardiac surgery. Eighty-nine patients, all except for one postoperative death, were followed-up with serial electrocardiographic studies, 24-hour Holter monitoring tests, and regular echocardiographic studies. Results: Eighty-nine patients undergoing the maze operation were divided into two groups according to the presence of SR. At the time of last follow-up (mean follow-up period, $51.0{\pm}30.8$ months), 79 patients (88.8%) showed SR (SR group) and 10 patients (11.2%) had recurrent AF (AF group). Factors predictive of sustained SR were the immediate postoperative conversion to SR (odds ratio, 97.2; p=0.001) and the presence of SR at the 6th month postoperatively (odds ratio, 155.7; p=0.002). Duration of AF, mitral valve surgery, number of valves undergoing surgery, left atrial dimension, and perioperative left ventricular dimensions and ejection fractions were not predictors of postoperative maintenance of SR. Conclusion: Immediate postoperative SR conversion and the presence of SR at the 6th postoperative month were independent predictors of sustained SR after the maze operation.

고온 SCR 촉매의 반응 특성 및 효율 증진에 관한 연구 (A Study on the Reaction Characteristics and Efficiency Improvement of High-temperature SCR Catalyst)

  • 남기복;강연석;홍성창
    • 공업화학
    • /
    • 제26권6호
    • /
    • pp.666-673
    • /
    • 2015
  • 본 연구에서는 고온영역에서 NOx를 제어하기 위한 선택적 환원촉매(SCR)의 연구를 수행하였다. 제조된 촉매들의 구조적 특성 및 흡 탈착 특성을 확인하기 위하여 XRD, FT-IR 분석을 수행하였다. Anatase $TiO_2$ 지지체의 경우 미미한 NOx 전환율을 나타내었으며, 이에 W을 활성금속으로 하여 제조한 $W/TiO_2$ 촉매에서 우수한 NOx 제거 능력을 보였다. 특히 $400^{\circ}C$ 이상의 고온영역에서 순수 $TiO_2$의 NOx 전환율보다 W이 함유된 $W/TiO_2$의 촉매에서 급격한 활성 증가를 확인할 수 있었다. 또한, 장시간의 열충격에 따른 반응활성이 감소되는 현상이 억제됨을 확인하였다.

다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발 (Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge)

  • 허동훈;현동열;박성철;박귀일
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

DICOM 영상과 다양한 형식의 영상 비교 (Comparison of DICOM images and various types of images)

  • 김지율;고성진
    • 융합신호처리학회논문지
    • /
    • 제18권2호
    • /
    • pp.76-83
    • /
    • 2017
  • 본 연구에서는 원본 의료영상인 DICOM 파일을 TIFF, BITMAP, GIF, JPEG 이미지 파일로 변환한 후 Origin pro와 ICY 영상분석 프로그램을 이용하여 영상의 압축 및 변환과정에 따른 변환 손실율을 정량적으로 평가를 하고자 하였다. 평가 방법으로는 50% MTF, 구조적 유사지수, MSE, RMSE, 최대 신호대 잡음비 등을 실험을 통하여 평가하였으며, TIFF 이미지 파일의 경우 모든 실험군에서 DICOM 영상과 동일한 결과 값을 나타내어 DICOM 영상과 동일 하거나 가장 유사한 이미지 파일 형식이라고 판단하였다. 그리고 JPEG 이미지 파일의 화질의 손실 및 왜곡의 정도가 가장 심한 결과로 나타났다, 본 연구는 Origin pro나 ICY 의료영상 분석 프로그램과 같은 독창적인 평가 프로그램을 적용하여 이후의 디지털 의료영상 기초 연구분야에서 본 논문의 평가 방법이 의료 영상 처리 분야의 연구 자료로 활용될 것으로 기대되며, DICOM 파일을 지원하지 않는 디지털 의료영상 및 평가 프로그램을 이용한 기초 연구분야에서 DICOM 영상과 동일한 결과를 나타내는 TIFF 이미지 파일을 기준으로 제시하여, 이미지 파일을 이용한 디지털 의료영상처리 연구 분야에서 신뢰성을 확보하는데 도움이 될 것으로 추론된다.

  • PDF