DOI QR코드

DOI QR Code

A Study on the Reaction Characteristics and Efficiency Improvement of High-temperature SCR Catalyst

고온 SCR 촉매의 반응 특성 및 효율 증진에 관한 연구

  • Nam, Ki Bok (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Kang, Youn Suk (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 남기복 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 강연석 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 홍성창 (경기대학교 환경에너지시스템공학과)
  • Received : 2015.08.12
  • Accepted : 2015.09.16
  • Published : 2015.12.10

Abstract

In this paper the selective reduction catalyst (SCR) for controlling the NOx at high temperature range was studied. XRD and FT-IR BET analysis was also performed to determine the structural properties and adsorption/desorption characteristics of the catalyst. In the case of anatase $TiO_2$ support, a negligible NOx conversion was observed, but the $W/TiO_2$ catalyst made using W as a active metal showed an excellent ability to remove NOx. In particular, the $W/TiO_2$ exhibited a rapid increase in the catalytic activity due to the presence of W for the NOx conversion compared to that of using the pure $TiO_2$ at a high temperature range over $400^{\circ}C$. In addition, the phenomenon of reduced reaction activity due to the heat shock for a long time was found to be suppressed.

본 연구에서는 고온영역에서 NOx를 제어하기 위한 선택적 환원촉매(SCR)의 연구를 수행하였다. 제조된 촉매들의 구조적 특성 및 흡 탈착 특성을 확인하기 위하여 XRD, FT-IR 분석을 수행하였다. Anatase $TiO_2$ 지지체의 경우 미미한 NOx 전환율을 나타내었으며, 이에 W을 활성금속으로 하여 제조한 $W/TiO_2$ 촉매에서 우수한 NOx 제거 능력을 보였다. 특히 $400^{\circ}C$ 이상의 고온영역에서 순수 $TiO_2$의 NOx 전환율보다 W이 함유된 $W/TiO_2$의 촉매에서 급격한 활성 증가를 확인할 수 있었다. 또한, 장시간의 열충격에 따른 반응활성이 감소되는 현상이 억제됨을 확인하였다.

Keywords

References

  1. B. J. Jang, The research of reaction characteristic and the improvement of efficiency of $TiO_2$ Catalyst for SCR in high temperature, Kyonggi Univ., M. S. Thesis (2008).
  2. C. D. Cooper and F. C. Alley, Air Pollution Control: A Design Approach, Waveland Pr Inc; 2nd edition (1994).
  3. A. Gutierrez-Alejandre, P. Castillo, J. Ramirez, G. Ramis, and G. Busca, Redox and acid reactivity of wolframyl centers on oxide carriers: Bronsted, Lewis and redox sites, Appl. Catal A: Gen., 216, 181-194 (2001). https://doi.org/10.1016/S0926-860X(01)00557-9
  4. U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep., 48, 53-229 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0
  5. L. Lietti, Reactivity of $V_2O_5-WO_3/TiO_2$ de-NOX catalysts by transient methods, Appl. Catal. B: Environ., 10, 281-297 (1996). https://doi.org/10.1016/S0926-3373(97)80001-X
  6. G. Busca and A. Zecchina, Charaterisation of $V_2O_5-TiO_2$ Eurocat catalysts by vibrational and electronic spectroscopies, Catal. Today., 20, 61-74 (1994). https://doi.org/10.1016/0920-5861(94)85016-X
  7. J. P. Chen and R. T. Yang, Role of $WO_3$ in mixed $V_2O_5-WO_3/TiO_2$ catalysts for selective catalytic reduction of nitric oxide with ammonia, Appl. Catal., 80, 135-148 (1992). https://doi.org/10.1016/0926-860X(92)85113-P
  8. J. H. Bae, C. K. Lee, and J. R. Song, Characterization of $TiO_2$ modified with $WO_3$ and Catalytic Activity for Acid Catalysts, Appl. Chem., 2, 969-972 (1998).
  9. J. Svachula, L. J. Alemany, N. Ferlazzo, P. Forzatti, and E. Tronconi, Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNoxing Catalysts, Ind. Eng. Chem. Res., 32, 826-834 (1993). https://doi.org/10.1021/ie00017a009
  10. J. Engweiler, J. Harf, and A. Baiker, $WO_X/TiO_2$ Catalysts Prepared by Grafting of Tungsten Alkoxides: Morpholohical Properties and Catalytic Behavior in the Selective Reduction of NO by $NH_3$, J. Catal., 159, 259-269 (1996). https://doi.org/10.1006/jcat.1996.0087
  11. G. T. Went, J. Leu, R. R. Rosin, and A. T. Ball, The effect of structure on the Catalytic Activity and Selectivity of $V_2O_5/TiO_2$ for the reduction of NO by $NH_3$, J, Catal., 134, 492-505 (1992). https://doi.org/10.1016/0021-9517(92)90337-H
  12. J. M. G. Amores, V. S. Escribano, G. Ramis, and G. Busca, An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides, Appl. Catal. B: Environ., 13, 45-48 (1997). https://doi.org/10.1016/S0926-3373(96)00092-6
  13. L. Lietti, J. L. Alemany, P. Forzatti, G. Busca, G. Ramis, E. Giamello, and F. Bregani, Reactivity of $V_2O_5-WO_3/TiO_2$ catalysts in the selective catalytic reductioin of nitric oxide by ammonia, Catal. Today, 29, 143-148 (1996). https://doi.org/10.1016/0920-5861(95)00250-2
  14. N. Y. Topsoe, J. A. Dumesic, and H. Topsoe, Vanadia-Titania catalysts for selective catalysts reduction of nitric oxide by ammonia: I. I. Studies of Acitve Sites and Formulation of Catalytic Cycles, J. Catal., 151, 241-252 (1995). https://doi.org/10.1006/jcat.1995.1025
  15. N. Y. Topsoe, H. Topsoe, and J. A. Dumesic, $Vanadia/TiO_2$ Catalysts for Selective Catalytic Reduction (SCR) of Nitric-oxide by Ammonia: I. Combined Temperature-Programmed in-Situ FTIR and On-line Mass-Spectroscopy Studies, J. Catal., 151, 226-240 (1995). https://doi.org/10.1006/jcat.1995.1024
  16. M. Kobayashi and K. Miyoshi, $WO_3-TiO_2$ monolithic catalysts for high temperature SCR of NO by $NH_3$ : Influence of preparation method on structural and physico-chemical properties, activity and durability, Appl. Catal. B: Environ., 72, 253-261 (2007). https://doi.org/10.1016/j.apcatb.2006.11.007

Cited by

  1. A Study on NH3-SCR Reaction Characteristics of W/TiO2 Catalyst with Ce Addition vol.34, pp.6, 2018, https://doi.org/10.5572/KOSAE.2018.34.6.759
  2. Current Catalyst Technology of Selective Catalytic Reduction (SCR) for NOx Removal in South Korea vol.10, pp.1, 2015, https://doi.org/10.3390/catal10010052