Browse > Article
http://dx.doi.org/10.1007/s10059-009-0089-9

Disulfide Bond as a Structural Determinant of Prion Protein Membrane Insertion  

Shin, Jae Yoon (Department of Genetic Engineering, Sungkyunkwan University)
Shin, Jae Il (Department of Genetic Engineering, Sungkyunkwan University)
Kim, Jun Seob (Department of Genetic Engineering, Sungkyunkwan University)
Yang, Yoo Soo (Department of Genetic Engineering, Sungkyunkwan University)
Shin, Yeon-Kyun (Department of Biochemistry and Biophysics, Iowa State University)
Kim, Kyeong Kyu (Department of Molecular Cell Biology, Samsung Biomedical Research Institute, and Sungkyunkwan University School of Medicine)
Lee, Sangho (Department of Biological Science, Sungkyunkwan University)
Kweon, Dae-Hyuk (Department of Genetic Engineering, Sungkyunkwan University)
Abstract
Conversion of the normal soluble form of prion protein, PrP ($PrP^C$), to proteinase K-resistant form ($PrP^{Sc}$) is a common molecular etiology of prion diseases. Proteinase K-resistance is attributed to a drastic conformational change from ${\alpha}$-helix to ${\beta}$-sheet and subsequent fibril formation. Compelling evidence suggests that membranes play a role in the conformational conversion of PrP. However, biophysical mechanisms underlying the conformational changes of PrP and membrane binding are still elusive. Recently, we demonstrated that the putative transmembrane domain (TMD; residues 111-135) of Syrian hamster PrP penetrates into the membrane upon the reduction of the conserved disulfide bond of PrP. To understand the mechanism underlying the membrane insertion of the TMD, here we explored changes in conformation and membrane binding abilities of PrP using wild type and cysteine-free mutant. We show that the reduction of the disulfide bond of PrP removes motional restriction of the TMD, which might, in turn, expose the TMD into solvent. The released TMD then penetrates into the membrane. We suggest that the disulfide bond regulates the membrane binding mode of PrP by controlling the motional freedom of the TMD.
Keywords
disulfide bond; membrane binding; prion protein; transmembrane domain;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Deleault, N.R., Harris, B.T., Rees, J.R., and Supattapone, S. (2007). From the cover: formation of native prions from minimal compo-nents In vitro. Proc. Natl. Acad. Sci. USA 104, 9741-9746   DOI   ScienceOn
2 Hegde, R.S., Tremblay, P., Groth, D., DeArmond, S.J., Prusiner, S.B., and Lingappa, V.R. (1999). Transmissible and geneti prion diseases share a common pathway of neurodegeneration. Nature 402, 822   DOI   PUBMED   ScienceOn
3 Kazlauskaite, J., Sanghera, N., Sylvester, I., V$\acute{e}$nien-Bryan, C., and Pinheiro, T.J. (2003). Structural changes of the prion protein in lipid membranes leading to aggregation and fibrillization. Biochemistry 42, 3295-3304   DOI   ScienceOn
4 Mehlhorn, I., Groth, D., Stockel, J., Moffat, B., Reilly, D., Yansura, D., Willett, W.S., Baldwin, M., Fletterick, R., Cohen, F.E., et al. (1996). High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry 35, 5528-5537   DOI   ScienceOn
5 Muramoto, T., Scott, M., Cohen, F.E., and Prusiner, S.B. (1996). Recombinant scrapie-like prion protein of 106 amino acids is soluble. Proc. Natl. Acad. Sci. USA 93, 15457-15462   DOI   ScienceOn
6 Sanghera, N., and Pinheiro, T.J. (2002). Binding of prion protein to lipid membranes and implications for prion conversion. J. Mol. Biol. 315, 1241-1256   DOI   ScienceOn
7 Swietnicki, W., Petersen, R., Gambetti, P., and Surewicz, W.K. (1997). pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231). J. Biol. Chem. 272, 27517-27520   DOI   ScienceOn
8 Wang, X., Wang, F., Arterburn, L., Wollmann, R., and Ma, J. (2006). The interaction between cytoplasmic prion protein and the hydrophobic lipid core of membrane correlates with neurotoxicity. J. Biol. Chem. 281, 13559-13565   DOI   ScienceOn
9 De Gioia, L., Selvaggini, C., Ghibaudi, E., Diomede, L., Bugiani, O., Forloni, G., Tagliavini, F., and Salmona, M. (1994). Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. J. Biol. Chem. 269, 7859-7862   PUBMED
10 Shin, J.I., Shin, J.Y., Kim, J.S., Yang, Y.S., Shin, Y.K., and Kweon, D.H. (2008). Deep membrane insertion of prion protein upon reduction of disulfide bond. Biochem. Biophys. Res. Commun. 377, 995-1000   DOI   ScienceOn
11 Morillas, M., Swietnicki, W., Gambetti, P., and Surewicz, W.K. (1999). Membrane environment alters the conformational structure of the recombinant human prion protein. J. Biol. Chem 274, 36859-36865   DOI   ScienceOn
12 Horiuchi, M., and Caughey, B. (1999). Prion protein interconversions and the transmissible spongiform encephalopathies. Structure 7, R231-240   DOI   ScienceOn
13 Kazlauskaite, J., and Pinheiro, T.J. (2005). Aggregation and fibrillization of prions in lipid membranes. Biochem. Soc. Symp. 72, 211-222   DOI   ScienceOn
14 Re, F., Sesana, S., Barbiroli, A., Bonomi, F., Cazzaniga, E., Lonati, E., Bulbarelli, A., and Masserini, M. (2008). Prion protein structure is affected by pH-dependent interaction with membranes: a study in a model system. FEBS Lett. 582, 215-220   DOI   ScienceOn
15 Welker, E., Raymond, L.D., Scheraga, H.A., and Caughey, B. (2002). Intramolecular versus intermolecular disulfide bonds in prion proteins. J. Biol. Chem. 277, 33477-33481   DOI   ScienceOn
16 Eftink, M.R., and Ghiron, C.A. (1981). Fluorescence quenching studies with proteins. Anal. Biochem. 114, 199-227   DOI   ScienceOn
17 Hegde, R.S., Mastrianni, J.A., Scott, M.R., DeFea, K.A., Tremblay, P., Torchia, M., DeArmond, S.J., Prusiner, S.B., and Lingappa, V.R. (1998). A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827-834   DOI   PUBMED   ScienceOn
18 Jackson, G.S. (1999). Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935   DOI   PUBMED   ScienceOn
19 Kocisko, D.A., Come, J.H., Priola, S.A., Chesebro, B., Raymond, G.J., Lansbury, P.T., and Caughey, B. (1994). Cell-free formation of protease-resistant prion protein. Nature 370, 471-474   DOI   ScienceOn
20 Maiti, N.R., and Surewicz, W.K. (2001). The role of disulfide bridge in the folding and stability of the recombinant human prion protein. J. Biol. Chem. 276, 2427-2431   DOI   PUBMED   ScienceOn
21 Welker, E., Wedemeyer, W.J., Narayan, M., and Scheraga, H.A. (2001). Coupling of conformational folding and disulfide-bond reactions in oxidative folding of proteins. Biochemistry 40, 9059-9064   DOI   ScienceOn
22 Baron, G.S., and Caughey, B. (2003). Effect of glycosylphosphatidylinositol anchor-dependent and -independent prion protein association with model raft membranes on conversion to the protease- resistant isoform. J. Biol. Chem. 278, 14883-14892   DOI   ScienceOn
23 Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., and W$\ddot{u}$thrich, K. (1996). NMR structure of the mouse prion protein domain PrP(121-321). Nature 382, 180-182   DOI   PUBMED   ScienceOn
24 Prusiner, S.B. (1998). Prions. Proc. Natl. Acad. Sci. USA 95, 13363-13383   DOI   ScienceOn
25 St$\ddot{o}$hr, J., Weinmann, N., Wille, H., Kaimann, T., Nagel-Steger, L., Birkmann, E., Panza, G., Prusiner, S.B., Eigen, M., and Riesner, D. (2008). Mechanisms of prion protein assembly into amyloid. Proc. Natl. Acad. Sci. USA 105, 2409-2414   DOI   ScienceOn
26 Forloni, G., Angeretti, N., Chiesa, R., Monzani, E., Salmona, M., Bugiani, O., and Tagliavini, F. (1993) Neurotoxicity of a prion protein fragment. Nature 362, 543-546   DOI   ScienceOn
27 Knaus, K.J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W.K., and Yee, V.C. (2001). Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat. Struct. Biol. 8, 770-774   DOI   ScienceOn
28 Kweon, D.H., Shin, Y.K., Shin, J.Y., Lee, J.H., Lee, J.B., Seo, J.H., and Kim, Y.S. (2006). Membrane topology of helix 0 of the Epsin N-terminal homology domain. Mol. Cells 21, 428-435   PUBMED   ScienceOn
29 Hubbell, W.L., McHaourab, H.S., Altenbach, C., and Lietzow, M.A. (1996). Watching proteins move using site-directed spin labeling. Structure 4, 779-783   DOI   ScienceOn
30 Critchley, P., Kazlauskaite, J., Eason, R., and Pinheiro, T.J. (2004). Binding of prion proteins to lipid membranes. Biochem. Biophys. Res. Commun.313, 559-567   DOI   ScienceOn
31 Hubbell, W.L., Cafiso, D.S., and Altenbach, C. (2000). Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7, 735-739   DOI   ScienceOn
32 L$\acute{o}$pez Garc$\acute{i}$a, F., Zahn, R., Riek, R., and W$\ddot{u}$thrich, K. (2000). NMR structure of the bovine prion protein. Proc. Natl. Acad. Sci. USA 97, 8334-8339   DOI
33 Turk, E., Teplow, D.B., Hood, L.E., and Prusiner, S.B. (1988). Purification and properties of the cellular and scrapie hamster prion proteins. Eur. J. Biochem. 176, 21-30   DOI   ScienceOn
34 Castilla, J., Sa$\acute{a}$, P., Hetz, C., and Soto, C. (2005).In vitro generation of infectious scrapie prions. Cell 121, 195-206   DOI   ScienceOn
35 Zahn, R., Liu, A., L$\ddot{u}$hrs, T., Riek, R., von Schroetter, C., L$\acute{o}$pez Garc$\acute{i}$a, F., Billeter, M., Calzolai, L., Wider, G., and W$\ddot{u}$thrich, K. (2000). NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 97, 145-150   DOI   ScienceOn
36 McHaourab, H.S., Kalai, T., Hideg, K., and Hubbell, W.L. (1999). Motion of spin-labeled side chains in T4 lysozyme: effect of side chain structure. Biochemistry 38, 2947-2955   DOI   ScienceOn
37 Pinheiro, T.J. (2006). The role of rafts in the fibrillization and aggregation of prions. Chem. Phys. Lipids 141, 66-71   DOI   PUBMED   ScienceOn
38 James, T.L., Liu, H., Ulyanov, N.B., Farr-Jones, S., Zhang, H., Donne, D.G., Kaneko, K., Groth, D., Mehlhorn, I., Prusiner, S.B., et al. (1997). Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 94, 10086-10091   DOI   ScienceOn
39 Lin, M.C., Mirzabekov, T., and Kagan, B.L. (1997). Channel formation by a neurotoxic prion protein fragment. J. Biol. Chem. 272, 44-47   DOI   PUBMED   ScienceOn
40 Legname, G., Baskakov, I.V., Nguyen, H.O., Riesner, D., Cohen, F.E., DeArmond, S.J., and Prusiner, S.B. (2004). Synthetic mammalian prions. Science 305, 673-676   DOI   PUBMED   ScienceOn
41 Fanucci, G.E., and Cafiso, D.S. (2006). Recent advances and applications of site-directed spin labeling. Curr. Opin. Struct. Biol. 16, 644-653   DOI   ScienceOn