• 제목/요약/키워드: Structural Control System

검색결과 1,476건 처리시간 0.034초

Experimental analysis of a semi-actively controlled steel building

  • Occhiuzzi, Antonio;Spizzuoco, Mariacristina
    • Structural Engineering and Mechanics
    • /
    • 제19권6호
    • /
    • pp.721-747
    • /
    • 2005
  • The strong need of verifying theories formulated for semi-active control through applications to real structures is due to the fact that theoretical research on semi-active control systems is not matched by a corresponding satisfactory experimental activity. This paper shows how a smart system including magnetorheological devices as damping elements can be implemented in a large-scale structural model, by describing in detail the kind of electronics (dedicated hardware and software) adopted during the experimental campaign. It also describes the most interesting results in terms of reduction of the seismic response (either experimental or numerical) of the semi-actively controlled structure compared to a passive operating control system, and in terms of the evaluation criteria proposed in the benchmark for seismically excited controlled buildings. The paper also explains how to derive from the classical theory of optimal control the adopted control logic, based on a clear physical approach, and provides an exhaustive picture of the time delays characterizing the control sequence.

Active mass damper system using time delay control algorithm for building structure with unknown dynamics

  • Jang, Dong-Doo;Jung, Hyung-Jo;Moon, Yeong-Jong
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.305-318
    • /
    • 2014
  • This paper numerically investigates the feasibility of an active mass damper (AMD) system using the time delay control (TDC) algorithm, which is one of the robust and adaptive control algorithms, for effectively suppressing the excessive vibration of a building structure under wind loading. Because of its several attractive features such as the simplicity and the excellent robustness to unknown system dynamics and disturbance, the TDC algorithm has the potential to be an effective control system for mitigating the vibration of civil engineering structures such as buildings and bridges. However, it has not been used for structural response reduction yet. In this study, therefore, the active control method combining an AMD system with the TDC algorithm is first proposed in order to reduce the wind-induced vibration of a building structure and its effectiveness is numerically examined. To this end, its stability analysis is first performed; and then, a series of numerical simulations are conducted. It is demonstrated that the proposed active structural control system can effectively reduce the acceleration response of the building structure.

토목 구조 제어 시스템의 현황 (The State of Art of Structural Control Systems)

  • 김기봉;홍창국
    • 소음진동
    • /
    • 제3권2호
    • /
    • pp.127-135
    • /
    • 1993
  • The structural control systems for civil engineering structures have got considerable attention in recent years, since they become effective protective systems. The key idea behind structural control is to keep the response of a structure within certain bounds dictated by serviceability, structural safety, and reliability. Recent activities in control algorithm development and control system design and practical aspects of their applications are sumarized, followed by a discussion on prossible future directions.

  • PDF

하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화 (Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.

스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가 (Performance assessment of multi-hazard resistance of Smart Outrigger Damper System)

  • 김현수
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.139-145
    • /
    • 2018
  • 아웃리거 시스템은 지진이나 풍하중에 의한 동적 응답을 줄이기 위하여 고층 건물의 횡방향 강성을 증가시키는데 널리 사용되고 있다. 풍하중과 지진하중의 동적 특성은 매우 다르기 때문에 스마트 진동 제어 시스템이 아웃리거 시스템과 함께 사용된다면 두 가지 동적 하중에 대해서 효과적으로 사용될 수 있을 것이다. 본 논문에서는 아웃리거 댐퍼 시스템 기반 멀티 해저드 적응형 스마트 구조 제어 시스템에 대한 연구를 수행하였다. 스마트 아웃리거 댐퍼 시스템을 개발하기 위하여 MR 댐퍼를 사용하였다. 수치 해석을 위해 미국에 있는 LA, 찰스턴, 앵커리지의 세 도시에 대한 멀티 해저드 지진하중과 풍하중을 생성하였다. 스마트 아웃리거 댐퍼 시스템의 최적 설계를 위하여 MR 댐퍼 용량에 대한 파라메터 연구를 수행하였다. 유전자 알고리즘으로 최적화된 퍼지 논리 제어기를 이용하여 스마트 제어 알고리즘을 개발하였다. 해석결과를 통하여 아웃리거 댐퍼 시스템 기반 적응형 스마트 구조제어 시스템이 풍하중과 지진하중의 멀티 해저드에 대해서 우수한 제어성능을 나타내는 것을 확인할 수 있었다.

Clipped-Optimal Control을 사용한 MR 감쇠기의 면진성능에 관한 연구 (A Study on Base Isolation Performance of MR Dampers Using Clipped-Optimal Control)

  • 고봉준;이종세
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.529-536
    • /
    • 2003
  • As large structures such as high-rise buildings and cable-stayed bridges become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a method to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, the seismic performance of MR dampers are studied and compared with that of the NZ system as a base isolation system. As the control algorithm of the MR damper, the clipped-optimal control(applied LQR method) is employed. A five-story building is modeled and the seismic performance of the two systems subjected to three different earthquakes is compared. The results show that the MR damper system can provide superior protection than the NZ system for a wide range of ground motions.

  • PDF

Closed-loop structural control with real-time smart sensors

  • Linderman, Lauren E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1147-1167
    • /
    • 2015
  • Wireless smart sensors, which have become popular for monitoring applications, are an attractive option for implementing structural control systems, due to their onboard sensing, processing, and communication capabilities. However, wireless smart sensors pose inherent challenges for control, including delays from communication, acquisition hardware, and processing time. Previous research in wireless control, which focused on semi-active systems, has found that sampling rate along with time delays can significantly impact control performance. However, because semi-active systems are guaranteed stable, these issues are typically neglected in the control design. This work achieves active control with smart sensors in an experimental setting. Because active systems are not inherently stable, all the elements of the control loop must be addressed, including data acquisition hardware, processing performance, and control design at slow sampling rates. The sensing hardware is shown to have a significant impact on the control design and performance. Ultimately, the smart sensor active control system achieves comparable performance to the traditional tethered system.

Task Rescheduling Using a Coordinator in a Structural Decentralized Control of Supervisory Control Systems

  • Lee, Sang-Heon;Kim, Ill-Soo;Kai C. Wong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권2호
    • /
    • pp.22-31
    • /
    • 2004
  • A problem of task rescheduling using a coordinator in a structural decentralized control of supervisory control theory is formulated. we consider that the overall system is divided into a number of local systems. Using an example of a chemical batch reaction process, it has shown that after local supervisors have been established for a given task, a coordinator can be used to solve some rescheduling problems among local plants for new or modified tasks. The coordination system models the interactions of local plants, and is consisting of only the shared events of local plants, so simpler to synthesize. A coordinator is designed based on the specifications given for the coordination system. Under the 'structural' conditions developed in this paper, the combined concurrent actions of the coordinator with the existing local supervisors will achieve the rescheduling requirements. Again since the conditions are structural (not specification-dependent), once the coordination architecture has been established, it can be used for a number of different tasks without further verifications.

Semi-active leverage-type isolation system considering minimum structural energy

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Chen, Chi-Jen
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.373-387
    • /
    • 2018
  • Semi-active isolation systems based on leverage-type stiffness control strategies have been widely studied. The main concept behind this type of system is to adjust the stiffness in the isolator to match the fundamental period of the isolated system by using a simple leverage mechanism. Although this system achieves high performance under far-field earthquakes, it is unsuitable for near-fault strong ground motion. To overcome this problem, this study considers the potential energy effect in the control law of the semi-active isolation system. The minimal energy weighting (MEW) between the potential energy and kinetic energy was first optimized through a series of numerical simulations. Two MEW algorithms, namely generic and near-fault MEW control, were then developed to efficiently reduce the structural displacement responses. To demonstrate the performance of the proposed method, a two-degree-of-freedom structure was employed as a benchmark. Numerical results indicate that the dynamic response of the structure can be effectively dampened by the proposed MEW control under both far-field and near-fault earthquakes, whereas the structural responses resulting from conventional control methods may be greater than those for the purely passive control method. Moreover, according to experimental verifications, both the generic and near-fault MEW control modes yielded promising results under impulse-like earthquakes. The practicability of the proposed control algorithm was verified.

사장 케이블 제진을 위한 스마트 제진 기법 (Smart Control Techniques for Vibration Suppression of Stay Cable)

  • 정형조;박철민;조상원;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.264-271
    • /
    • 2006
  • Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. It has been reported that a semiactive control system using MR dampers could potentially achieve both the better performance compared to a passive control system and the adaptability with few of the detractions. However, a control system including a power supply, a controller and sensors is required to improve the control performance of MR dampers. This complicated control system is not effective to most of large civil structures such as long-span bridges and high-rise buildings. This paper proposes a smart damping system which consists of an MR damper and the electromagnetic induction (EMI) part that is considered as an external power source to the MR damper. The control performance of the proposed damping system has been compared with that of the passive-type control systems employing an MR damper and a linear viscous damper.

  • PDF