• Title/Summary/Keyword: Structural Constraints

Search Result 733, Processing Time 0.024 seconds

The structural analysis between safety factors having an effect on the construction workers' behavior (건설 근로자의 안전행동 영향요인들 간의 구조분석)

  • Shin, Dong-Pil;Lee, Dong-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.1
    • /
    • pp.101-114
    • /
    • 2013
  • This paper presents the findings relative to the influence factors on the safety of construction worker's actions. It identifies the factors which are involved in the safety behavior exercised by construction worker. They are compiled from existing studies that investigates the factors relative to the safety behavior. This study finds some factors which have powerful direct effects on safety behavior of construction workers. In addition, a model which defines the relationship between the factors and the behaviors of workers is established to analyze the effects. This study contributes to designe a theoretical model that shows workers' behaviors and analyzes the effects attributed to these factors: i.e., organizational commitment, stress reaction, safety motivation, safety knowledge, and safety climate. Survey questionaries are administered to the workers on the construction job sites located in Daegu metropolitan city. using SPSS18.0 and AMOS18.0, Exploratory Factor Analysis, Cronbach's alpha, Confirmatory Factor Analysis, Structural Equations Model analysis were performed. The research findings are as follows; The communication and educational training have the direct effect on the safety behavior. The factors of the safety climate constraints and/or contributes to the safety motivation, safety knowledge, and organizational commitment.

Experimental Study on Improvement of Pipe-rack Joint (Pipe-rack접합부 개선방법에 관한 실험적 연구)

  • Lee, Jong-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • The development of new technology and process in industrial Plant which builds integrated structures, facilities and systems. Has become a key element for strengthening its competitiveness. Although domestic industrial Plant has demonstrated excellence in technology with a persistent increase in order quantity and orders received, the technology gap between countries has narrowed due to global construction trend. Therefore, it is necessary to develop new technology that could help overcome constraints and limitations of the current one to follow the trend in the age of unlimited competition. This study has focused on assembly technology of Pipe-rack joint connection in an effort to strengthen technological competitiveness in industrial Plant. Through an analysis of earlier studies on Pipe-rack and a coMParative analysis of strengths and weaknesses of current assembly technology of it, a new design plan has been made to improve it efficiently. In doing this, standards for design factors of both structural and performance features have been drawn, and value of stress, strain, moment and rotation has been calculated using finite element analysis. As a result, installation technology of modular type Pipe-rack, which has not been developed in Korea and is differentiated from the current one, has been developed. It is considered that the technology reduces work time and saves cost due to simplified joint connection of steel structure, unlike the current one. Moreover, since it is installed without a welding process in the field, industrial accidents would be reduced, which is likely to have economic competitiveness and satisfy.

A Study on the Buckling Stability due to Lateral Impact of Gas Pipe Installed on the Sea-bed (해저면에 설치된 가스관의 외부충격에 의한 좌굴 안전성 검토)

  • Park, Joo-Shin;Yi, Myung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.414-421
    • /
    • 2022
  • Subsea oil and gas exploration is increasingly moving into deeper water depths, and typically, subsea pipelines operate under high pressure and temperature conditions. Owing to the difference in these components, the axial force in the pipe is accumulated. When a pipeline is operated at a high internal pressure and temperature, it will attempt to expand and contract for differential temperature changes. Typically, the line is not free to move because of the plane strain constraints in the longitudinal direction and soil friction effects. For a positive differential temperature, it will be subjected to an axial compressive load, and when this load reaches a certain critical value, the pipe may experience vertical (upheaval buckling) or lateral (snaking buckling) movements that can jeopardize the structural integrity of the pipeline. In these circumstances, the pipeline behavior should be evaluated to ensure the pipeline structural integrity during operation in those demanding loading conditions. Performing this analysis, the correct mitigation measures for thermal buckling can be considered either by accepting bar buckling but preventing the development of excessive bending moment or by preventing any occurrence of bending.

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF

Macroeconomic Effects of the Global Resource Crisis (글로벌 자원위기의 거시경제적 효과분석)

  • Song, Tae-Jung;Kim, Gi-Seung
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.10
    • /
    • pp.259-267
    • /
    • 2008
  • This research will examine the probabilities of future global resource crisis and what significance and effect will come upon our economy through the rise of the cost of resources. From now on, the lack of the supply of global resources will dull the world economic growth. Not only that, but the direction of each country's economic development will be decided by the appropriate measure to the resource crisis. If we are to sustain this inefficient industrial structure, as a country with high dependancy on foreign resources, Korea might face macroeconomic shock and the loss of industrial competitiveness. Therefore, we must increase the efficiency of the resource usage in the manufacturing industry such as the chemical and steel industry, and now is a period when we must add high value to our products. Henceforth, the structural constraints of supply will be the root cause of resource crisis. Thus, we must lead the subject of the economic agencies, such as companies and consumers, so that they will be able to adapt to a new paradigm called the fundamental lack of resources, rather than temporal crisis management. The Korean economy must adjust the environment for industry transformation to be achieved.

Structural Modal Analysis Using Substructure Hybrid Interface Modes (혼합경계의 부분구조 모드를 이용한 구조물의 모드해석)

  • 김형근;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1138-1149
    • /
    • 1993
  • A new mode synthesis method using Lagrange multipliers and substructure hybrid interface modes is presented. Substruture governing equations of motion are derived using Lagrange equations and the constraints of geometric compatibility between the substructures are treated with Lagrange multipliers. Fixed, free, and loaded interface modes can be employed for the modal bases of each substructure. In cases of the fixed and loaded interface modes, two successive modal transformation relations are used. Compared with the conventional mode synthesis methods, the suggested method does not construct the equations of motion of the coupled structure and the final characteristic equation becomes a polynomial. Only modal parameters of each substructure and geometric compatibility conditions are needed. The suggested method is applied to a simple lumped mass model and parametric study is performed.

Analysing the Influence of Technology on the Business Performance of Rattan Processing SME's in South Kalimantan

  • Wiratmadja, Iwan Inrawan;Govindaraju, Rajesri;Setiawati, Evy
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.104-108
    • /
    • 2011
  • Technology is one of the major competitive advantages for small and medium enterprises (SME), especially ones operating in the manufacturing sector. Increasing technological capabilities is the basis for SME's business performance improvement. The main problem of SME's is a limitation in the areas of production facilities, technology, and human resources. Some of these constraints cause a decline in business performance and competitiveness of SME's. In this case analysis of technology components has to be carried out to determine the effect of technology on SME's business performance improvement. This study aims to measure the components of technology and to analyze the influence of each technology component on business performance of rattan processing SME's in South Kalimantan. The assessment is carried out on the technoware, humanware, inforware, and orgaware components using the technometric method (UNESCAP). Business performance is measured through a combination of financial and non-financial aspects deducted from financial and marketing figures. Analysis of the influence of technology components on business performance of SME's is done using the Structural Equation Model (SEM) with Partial Least Square software (PLS). Data is collected through interviews and questionnaires from 21 rattan processing SME's in South Kalimantan that produce rattan furnitures. The results show that the value of the contribution of technology (TCC) to the performance of rattan processing SME's in South Kalimantan is still quite low. Analysis of the results shows a direct influence of technoware and humanware on business performance, while orgaware influences business performance indirectly through humanware.

Multi-Disciplinary Design Optimization of a Wing using Parametric Modeling (파라미터 모델링을 이용한 항공기 날개의 다분야 설계최적화)

  • Kim, Young-Sang;Lee, Na-Ri;Joh, Chang-Yeol;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.229-237
    • /
    • 2008
  • In this research, a MDO(multi-disciplinary design optimization) framework, which integrates aerodynamic and structural analysis to design an aircraft wing, is constructed. Whole optimization process is automated by a parametric-modeling approach. A CFD mesh is generated automatically from parametric modeling of CATIA and Gridgen followed by automatic flow analysis using Fluent. Finite element mesh is generated automatically by parametric method of MSC.Patran PCL. Aerodynamic load is transferred to Finite element model by the volume spline method. RSM(Response Surface Method) is applied for optimization, which helps to achieve global optimum. As the design problem to test the current MDO framework, a wing weight minimization with constraints of lift-drag ratio and deflection of the wing is selected. Aspect ratio, taper ratio and sweepback angle are defined as design variables. The optimization result demonstrates the successful construction of the MDO framework.

Precedent based design foundations for parametric design: The case of navigation and wayfinding

  • Kondyli, Vasiliki;Bhatt, Mehul;Hartmann, Timo
    • Advances in Computational Design
    • /
    • v.3 no.4
    • /
    • pp.339-366
    • /
    • 2018
  • Parametric design systems serve as powerful assistive tools in the design process by providing a flexible approach for the generation of a vast number of design alternatives. However, contemporary parametric design systems focus primarily on low-level engineering and structural forms, without an explicit means to also take into account high-level, cognitively motivated people-centred design goals. We present a precedent-based parametric design method that integrates people-centred design "precedents" rooted in empirical evidence directly within state of the art parametric design systems. As a use-case, we illustrate the general method in the context of an empirical study focusing on the multi-modal analysis of wayfinding behaviour in two large-scale healthcare environments. With this use-case, we demonstrate the manner in which: (1). a range of empirically established design precedents -e.g., pertaining to visibility and navigation- may be articulated as design constraints to be embedded directly within state of the art parametric design tools (e.g., Grasshopper); and (2). embedded design precedents lead to the (parametric) generation of a number of morphologies that satisfy people-centred design criteria (in this case, pertaining to wayfinding). Our research presents an exemplar for the integration of cognitively motivated design goals with parametric design-space exploration methods. We posit that this opens-up a range of technological challenges for the engineering and development of next-generation computer aided architecture design systems.

Opitmal Design Technique of Nielsen Arch Bridges by Using Genetic Algorithm (유전자 알고리즘을 이용한 닐센아치교의 최적설계기법)

  • Lee, Kwang Su;Chung, Young Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.361-373
    • /
    • 2009
  • Using the genetic algorithm, the optimal-design technique of the Nielsen arch bridge was proposed in this paper. The design parameters were the arch-rise ratio and the steel weight ratio of the Nielsen arch bridge, and optimal-design techniques were utilized to analyze the behavior of the bridge. The optimal parameter values were determined for the estimated optimal level. The parameter determination requires the standardization of the safety, utility, and economic concepts as the critical factors of a structure. For this, a genetic algorithm was used, whose global-optimal-solution search ability is superior to the optimization technique, and whose object function in the optimal design is the total weight of the structure. The constraints for the optimization were displacement, internal stress, and time and space. The structural analysis was a combination of the small displacement theory and the genetic algorithm, and the runtime was reduced for parallel processing. The optimal-design technique that was developed in this study was employed and deduced using the optimal arch-rise ratio, steel weight ratio, and optimal-design domain. The optimal-design technique was presented so it could be applied in the industry.