• Title/Summary/Keyword: Strontium

Search Result 402, Processing Time 0.027 seconds

Influence of Yb2O3 Doping Amount on Screen-printed Barium Strontium Calcium Titanate Thick Films

  • Noh, Hyun-Ji;Lee, Sung-Gap;Ahn, Byeong-Lib;Lee, Ju
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.241-245
    • /
    • 2007
  • [ $(Ba_{0.9-x}Sr_xCa_{0.10})TiO_3$ ] (x=0.33, 0.36) powders were prepared by sol-gel method. $(Ba,Sr,Ca)TiO_3$(BSCT) thick films, undoped and doped with $MnCO_3$ and $Yb_2O_3(0.1{\sim}0.7mol%)$, were fabricated by the screen printing method on the alumina substrate. The coating and drying procedure was repeated 6-times. The Pt bottom electrode was screen printing method on the alumina substrate. These BSCT thick films were annealed at $1420^{\circ}C$ for 2 hr in atmosphere. The upper electrodes were fabricated by screen printing the Ag paste and then firing at $590^{\circ}C$ for 10 min. And then the structured and dielectric properties as a function of the doping amount of $Yb_2O_3$ were studied. As a result of the TG-DTA, exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All BSCT thick films showed XRD patterns of typical cubic peroveskite structure. The average thickness of BSCT thick films was about $70^{\mu}m$. The curie temperature and the dielectric constant decreased with increasing $Yb_2O_3$ doped content and the relative dielectric constant of the specimen, doped with 0.5 mol% $Yb_2O_3$ at BSCT(54/36/10), showed a best value of 5018 at curie temperature.

Chemical Stability of Conductive Ceramic Anodes in LiCl-Li2O Molten Salt for Electrolytic Reduction in Pyroprocessing

  • Kim, Sung-Wook;Kang, Hyun Woo;Jeon, Min Ku;Lee, Sang-Kwon;Choi, Eun-Young;Park, Wooshin;Hong, Sun-Seok;Oh, Seung-Chul;Hur, Jin-Mok
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.997-1001
    • /
    • 2016
  • Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive $La_{0.33}Sr_{0.67}MnO_3$ in $LiCl-Li_2O$ molten salt at $650^{\circ}C$ was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the $La_{0.33}Sr_{0.67}MnO_3$ anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.

Elemental analysis of caries-affected root dentin and artificially demineralized dentin

  • Sung, Young-Hye;Son, Ho-Hyun;Yi, Keewook;Chang, Juhea
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • Objectives: This study aimed to analyze the mineral composition of naturally- and artificially-produced caries-affected root dentin and to determine the elemental incorporation of resin-modified glass ionomer (RMGI) into the demineralized dentin. Materials and Methods: Box-formed cavities were prepared on buccal and lingual root surfaces of sound human premolars (n = 15). One cavity was exposed to a microbial caries model using a strain of Streptococcus mutans. The other cavity was subjected to a chemical model under pH cycling. Premolars and molars with root surface caries were used as a natural caries model (n = 15). Outer caries lesion was removed using a carbide bur and a hand excavator under a dyeing technique and restored with RMGI (FujiII LC, GC Corp.). The weight percentages of calcium (Ca), phosphate (P), and strontium (Sr) and the widths of demineralized dentin were determined by electron probe microanalysis and compared among the groups using ANOVA and Tukey test (p < 0.05). Results: There was a pattern of demineralization in all models, as visualized with scanning electron microscopy. Artificial models induced greater losses of Ca and P and larger widths of demineralized dentin than did a natural caries model (p < 0.05). Sr was diffused into the demineralized dentin layer from RMGI. Conclusions: Both microbial and chemical caries models produced similar patterns of mineral composition on the caries-affected dentin. However, the artificial lesions had a relatively larger extent of demineralization than did the natural lesions. RMGI was incorporated into the superficial layer of the caries-affected dentin.

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

Hydration Heat and Strength Characteristics of Cement Mortar with Phase Change Materials(PCMs) (상전이물질을 혼입한 시멘트 모르타르의 수화발열 및 강도 특성 평가)

  • Jang, Seok-Joon;Kim, Byung-Seon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.665-672
    • /
    • 2016
  • This study is conducted to investigate the effect of phase change materials (PCM) on hydration heat and strength characteristics of cement mortar. Two types of Barium and Strontium-based PCMs were used in this study and the addition ratio of each PCM to the cement mortar ranged from 1% to 5% by cement weight. Flow test, semi-adiabatic temperature rise test, compressive strength and flexural strength test were carried out to examine the PCM effect on heat and mechanical properties of cement mortar. Test results indicated that PCMs used in this study were effective to control hydration heat of cement mortar, and Barium-based PCM slightly reduce flow value. The compressive and flexural strength of cement mortar with PCM decreased with increasing the adding mount of PCM. The prediction model for compressive strength of cement mortar with different addition levels of PCMs are suggested in this study.

Dielectric and Pyroelectric Prooperties of (Ba,Sr)TiO$_3$ Thin Films Grown by RF Magntron Sputtering (RF 마그네트론 스퍼터링 방법으로 제조한 (Ba,Sr)TiO$_3$ 박막의 유전 및 초전특성)

  • 박재석;김진섭;이정희;이용현;한석룡;이재신
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.403-409
    • /
    • 1999
  • The dielectric and pyroelectric properties of $Ba_{0.66}$$Sr_{0.38}$$TiO_{3}$(BST) thin films growtn on Pt/Ti/NON/Si us-ing RF magnetron sputtering have been investigated. With increasing the substrate temperature during de-position of the BST film in the range of 300-$600^{\circ}C$ the dielectric and pyroelectric constants of the film were increased due to improved crystallinity of the film. In addition the dependence of the microstructural and electrical properties of BST films onthe deposition temperature of the bottom Pt electrode was studied. The preferred orientation of the BST films as well as the microstructure of the Pt film was greatly in-fluenced by the deposition temperature of the bottom Pt electrode was studied. The preferred orientation of the BSt films as well as the microstructure of the Pt film was greatly in-fluenced by the deposition temperature of the bottom Pt electrodes. and thus so were the pyrolelectric pro-perties of the BST film. The highest value of pyroelectric coefficient at room temperature obtained in this work was $nCcm^{-2}K^{-1}$ which is much higher than those previously reported on other perovskite fer-roelectric thin films.

  • PDF

Thermal Stability of SrAl2O4: Eu2+, Dy3+ with Long Afterglow Phosphorescence (SrAl2O4: Eu2+, Dy3+ 축광안료의 고온안정성에 관한 연구)

  • Kim, Jin-Ho;Lee, Seung-Yong;Kim, Tae-Ho;Han, Kyu-Sung;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.618-622
    • /
    • 2014
  • Oxide phosphorescent phosphor has an wide application in ceramic art and decoration due to its chemical and mechanical properties. Here, phosphorescent properties of strontium aluminate phosphor ($SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$) emitting yellowish-green light was investigated with thermal treatment at $1250^{\circ}C$ under air and reducing atmosphere. The characterizations of thermally treated samples were analyzed using X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), fluorescence spectrometer. $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ still showed a good phosphorescent properties after annealing process in reducing atmosphere, while phosphorescence of $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ annealed in air seriously degraded, due to oxidation of $Eu^{2+}$ to $Eu^{3+}$ ions. It was also observed that $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ annealed in reducing atmosphere emitted yellowish-green light during 3 h after being exposed to sunlight.

Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell (이중 페로브스카이트 촉매 PrBaMn2O5+δ의 고온전기분해조(Solid Oxide Electrolysis Cell) 연료극 촉매로 적용 가능성에 대한 연구)

  • Kwon, Youngjin;Kim, Dongyeon;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.491-496
    • /
    • 2017
  • The hydrogen($H_2$) is promising energy carrier of renewable energy in the microgrid system such as small village and military base due to its high energy density, pure emission and convenient transportation. $H_2$ can be generated by photocatalytic water splitting, gasification of biomass and water electrolysis driven by solar cell or wind turbine. Solid oxide electrolysis cells(SOECs) are the most efficient way to mass production due to high operating temperature improving the electrode kinetics and reducing the electrolyte resistance. The SOECs are consist of nickel-yttria stabilized zirconia(NiO-YSZ) fuel electrode / YSZ electrolyte / lanthanum strontium manganite-YSZ(LSM-YSZ) air electrode due to similarity to Solid Oxide Fuel Cells(SOFCs). The Ni-YSZ most widely used fuel electrode shows several problems at SOEC mode such as degradation of the fuel electrode because of Ni particle's redox reaction and agglomeration. Therefore Ni-YSZ need to be replaced to an alternative fuel electrode material. In this study, We studied on the Double perovskite $PrBrMnO_{5+{\delta}}$(PBMO) due to its high electric conductivity, catalytic activity and electrochemical stability. PBMO was impregnated into the scaffold electrolyte $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-{\delta}}$(LSGM) to be synthesized at low temperature for avoiding secondary phase generated when it exposed to high temperature. The Half cell test was conducted at SOECs and SOFCs modes.

Microstructure properties with variation of doped amount $Pr_{2}O_{3}$ of BSCT ceramics ($Pr_{2}O_{3}$ 첨가량에 따른 BSCT 세라믹의 미세구조 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Park, Sang-Man;Yun, Sang-Eun;Kim, Ji-Eun;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1283-1284
    • /
    • 2007
  • The barium strontium calcium titanate((Ba,Sr,Ca)$TiO_3$) powders prepared by the sol-gel method and $MnCO_3$ as acceptor were mixed oxide method. The microstructure was investigated with variation of $Pr_{2}O_{3}$ amount. The BSCT powder and $Pr_{2}O_{3}$ were mixed with organic vehicle(Ferro. B75001). BSCT thick films were fabricated by the screen-printing method on alumina substrates. The bottom electrode was Pt and upper electrode was Ag, respectively. All BSCT thick films were sintered at $1420^{\circ}C$, for 2h. The result of the differential thermal analysis(DTA), exothermic peak at around $654^{\circ}C$ due to the formation of the polycrystalline perovskite phase. In the X-ray diffraction(XRD) patterns, all BSCT thick films showed the typical perovskite polycrystalline structure and no pyrochlore phase was dbserved. The microstructure investigated by scanning electron microscope(SEM). Pore and grain size of BSCT thick films were decreased with increasing amount of $Pr_{2}O_{3}$ dopant. And the average grain size and thickness of BSCT thick films doped with 0.1 mol% $Pr_{2}O_{3}$ was $3.09{\mu}m$, $60{\mu}m$, respectively. The relative dielectric constant decreased and dielectric loss decreased with increasing amount of $Pr_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Pr_{2}O_{3}$ were 7443 and 4 % at 1 kHz, respectively.

  • PDF

Phase Transformation and Luminescent Properties of Ca1-xSrxAl2O4:Eu2+ Phosphors ([Ca1-xSrxAl2O4:Eu2+] 형광체의 상전이 및 발광특성에 관한 연구)

  • Park, Yun-Jin;Song, Hyun-Don;Jung, Sang-Hyun;Lee, Jee-Hee;Hwang, Min-Ha;Kim, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The phase transformations and luminescent properties of Eu-doped $Ca_{1-x}Sr_xAl_2O_4$ phosphors were investigated. $Ca_{1-x}Sr_xAl_2O_4:Eu^{2+}$ phosphors were synthesized by a solid-state reaction with a flux, $H_3BO_3$. A phase transformation from monoclinic $CaAl_2O_4$ to monoclinic $SrAl_2O_4$ was observed as the x values increased. A high-temperature hexagonal phase of $SrAl_2O_4$ was formed during this transformation as an intermediate phase under an $H_2$ atmosphere due to oxygen vacancies; this did not occur in an air atmosphere. Accordingly, the emission spectra shifted from a blue region to a green region as x increased.