• Title/Summary/Keyword: Strip Theory

Search Result 214, Processing Time 0.02 seconds

Numerical Prediction of Slamming Impact Loads and Response on a Ship in Waves Considering Relative Vertical Velocity (상대수직속도를 고려한 파랑중 선박의 슬래밍 충격하중 및 응답 계산)

  • Choi, Mun-Gwan;Park, In-Kyu;Koo, WeonCheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.503-509
    • /
    • 2014
  • This paper describes the time-domain numerical method for prediction of slamming loads on a ship in waves using the strip theory. The slamming loads was calculated considering the relative vertical velocity between the instantaneous ship motion and wave elevation. For applying the slamming force on a ship section, the momentum slamming theory and the empirical formula-based bottom slamming force were used corresponding to the vertical location of wetted body surface. Using the developed method, the vertical bending moments, relative vertical velocities, and impact forces of S175 containership were compared in the time series for various section locations and wave conditions.

The Comparison of Seakeeping Performance Analysis Methods for a High Speed Catamaran (Strip and 3-D Panel Method) (초고속 쌍동선에 대한 내항성능 해석 방법 비교 (스트립 방법과 3-D Panel 방법))

  • Lee, Ho-Young;Song, Ki-Jong;Yum, Deuk-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.127-138
    • /
    • 1996
  • The strip method, unified theory and 3-D panel method are commonly used methods for the seakeeping analysis of high-speed vessels. The strip method which is basically 2-dimensional method is known to give incorrect hydrodynamic coefficients and motion responses for the cases of high speed and low frequency region. And the unified theory which uses two dimensional approach in inner domain and slender body theory in outer domain is very complicate in computational modelling. Though the 3-D panel method requires comparatively long computation time, it is believed that the method gives good results without any limitation in ship speed and range of frequency for computation. In the 3-D panel method the source singularity representing translating and pulsating Green function is used and Hoff's method is adopted for the numerical calculation of the Green function. The computation time can be reduced by using the symmetry relationship with respect to longitudinal axis. In this paper the strip method and the 3-D panel method are compared for the seakeeping analysis of a high-speed catamaran. The Compared items are the hydrodynamic coefficients, wave exciting forces, frequency response functions and short-term responses in irregular waves.

  • PDF

Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.301-321
    • /
    • 2016
  • The objective of this paper is to investigate buckling behavior of composite laminated cylinders by using semi-analytical finite strip method. The shell is subjected to deformation-dependent loads which remain normal to the shell middle surface throughout the deformation process. The load stiffness matrix, which is responsible for variation of load direction, is also throughout the deformation process. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on the first-order shear deformation theory with Sanders-type of kinematic nonlinearity. Displacements and rotations of the shell middle surface are approximated by combining polynomial functions in the meridional direction and truncated Fourier series along with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix, which is responsible for variation of load direction, is also derived for each strip and after assembling, global load stiffness matrix of the shell is formed. The numerical illustrations concern the pressure stiffness effect on buckling pressure under various conditions. The results indicate that considering pressure stiffness causes buckling pressure reduction which in turn depends on various parameters such as geometry and lay-ups of the shell.

Development of the Practical and Adaptive Die of Piloting Stripper Type for Sheet Metal (part 1)

  • Sim, Sung-Bo;Sung, Yul-Min;Song, Young-Seok;Park, Hae-Kyoung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.109-113
    • /
    • 2000
  • The piercing and blanking of thin sheet metal working with a pilot punch guide is specified division in press die design and making. In order to prevent the detects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and its phenomena, die structure, machine tool working for die making, die materials and its heat treatment, metal working in industrial and its know how etc. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. This study regards to the aim of small quantity of production part's press working by piloting for accurate guide of actual sheet metal strip. Part 1 of this study reveals with production part and strip process layout for the die design.

  • PDF

Implementation of Fuzzy Classifier and Automatic Turning for Urine Analyzer System using the Strip (스트립을 이용한 뇨분석 시스템의 퍼지 분류기 및 자동 튜닝 구현)

  • Kim, K.W.;Lee, S.J.;Kim, K.N.;Choi, B.C.;Ye, S.Y.;Jun, K.R.;Cho, J.W.;Kim, J.H.;Lee, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.141-142
    • /
    • 1998
  • The urine analysis system implemented to measuring the primary color reaction of urinalysis strip. Fuzzy classifier based on fuzzy theory implemented so as to classify of 9 items in the urinalysis strip and proposed the automatic turning algorithm of mambership function in the fuzzy classifier to progress the reproduction of classify. To evaluation of clinical capability, the fuzzy classifier and automatic turning algorithm apples to standard strip and standard reagent.

  • PDF

A Study on Failure Mechanism of Reinforced Earth Retaining Wall under Strip Load (대상하중하의 보강토옹벽의 파괴 메카니즘에 관한 연구)

  • 유남재;김영길
    • Geotechnical Engineering
    • /
    • v.7 no.4
    • /
    • pp.35-48
    • /
    • 1991
  • Based on centrifuge model tests, the failure mechanism of reinforced earth retaining wall under strip load was investigated in this paper. Tests were performed by changing the materials of reinforcing strips, strip lengths, and strip arrangements. The strips were strain-gauged to measure the tensions in strips. The results were analyzed and compared with various design methosds in use to verify their feasibility. Consequently, a centrifuge model test was an effective method of investigating the behavior of reinforced earth retaining wall. The 2 : 1 stress diffusion method showed comparable results with tests in estimating the capacity of the reinforced earth wall under strip load. The superposition of tensions due to selfweight of the backfill and strip load was valid to estimate total tensions mobilized in strips. Using the elasticity theory to estimate the maximum tension mobilized in strips due to surcharge, while solutions of Boussinesq and Westergaard underestimated less tensions than the measured valises, Frohlich solution showed the comparable results with tests.

  • PDF

Design of 5kW-class Horizontal Axis Wind Turbine using In-house Code POSEIDON (In-house 코드 POSEIDON을 이용한 5kW급 수평축 풍력발전용 로터 블레이드 형상설계)

  • Kim, Ki-Pyoung;Kim, Ill-Soo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.492-492
    • /
    • 2009
  • Nowadays in Republic of Korea, there is no distinct reference for the related design technology of rotor blade of wind turbine. Therefore the optimum design and evaluation of performance is carried out with foreign commercial code softwares. This paper shows in-house code software that evaluates the aerodynamic design of wind turbine rotor blade using blade element-momentum theory (BEMT) and processes that is applied through various aerodynamics theories such as momentum theory, blade element theory, prandtl's tip loss theory and strip theory. This paper presents the results of the numerical analysis such as distribution of aerodynamic properties and performance curves using in-house code POSEIDON.

  • PDF

Dynamic Interaction of Waves with a Moored Structure (계류된 구조물에 작용하는 파도의 동적작용에 대하여)

  • Kim, Chang-Je
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.94-102
    • /
    • 1992
  • This paper presents the method of numerical analysis concerned with the hydropdynamic forces and moments of the floating bodies exerted by waves. The analytic methods of hydrodynamic wave forces and moments for large volume structures are generally classified into four categories ; the strip method, the boundary element method, the finite element method, and the potential matching method. In the case of the comparatively large structures, diffraction theory can be applied. However, there are no application limits of diffraction theory which have been known concerning with the analytic method of the rectangular structures. In this paper, the two-dimensional B.E.M. is treated for a moored small rectangular structure in order to evaluate applicability of diffraction theory. Numerical calculation is carried out for the structure. The results are compared with some other ones for verification. The result shows that diffraction theory is applicable to structures smaller than 0.15 in the ratio of the representative structure length d to wave length L for rectangular ones.

  • PDF

Study on the Development of Reinforced Earth Retaining Wall (보강옹벽개발연구)

  • 유용환
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.51-66
    • /
    • 1986
  • The design of fabric reinforced retaining wall structure was discussed in this article. It was confirmed that the reinforced retaining earth wall which was designed by new theoretical formulae developed this time was stable structurally and economically. The plastic fabric filter which was placed in layers behind the facing element reduced the lateral earth pressure on the wall elements in comparison with a conventional retaining earth walls. The reinforcing characteristics of earth wall was governed by the spacing of fabric layers, effective length of fabrics, particle distribution and compaction, and thus it is essential that, in the construction field, the reinforcing strips should be selected in order to develop the maximum friction forces bet.eon soil and fabric filters. The maximum tensile stress developed from the reinforcing strips was appeared at a little far distance from the back of skin element and it was not well agreed with the Rankine's theory but distributed well as a symmetrical shape against the point of the maximum tensile stress. The total length of the different layers should be sufficient so that the tension in the fabric strip could be transferred to the backfill material. Also the total stability of reinforced earth wall should be checked with respect to a failure surface which extended blond the different lathers.

  • PDF

Strip Angle Changes in Accordance with the Deformation Mode of Seismic Steel Plate Shear Wall Systems (내진 강판전단벽시스템의 변형모드에 따른 스트립앵글 변화)

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keun Yeong;Kim, Woo Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.497-507
    • /
    • 2013
  • This study investigated the tension-field action induced strip angle changes and deformed mode shapes of SPSW for high-rise structures subjected to lateral forces. Based on the numerical analysis 3, 9, 14 and 20 story structures, shear and flexural modes were identified by comparing the numerical analysis results to the predicted strength by theory. Shear deformation mode exhibited a constant angle in tension-field; whereas, flexural mode of the numerical results, differed from the tension-field action theory.