• Title/Summary/Keyword: Stride time

Search Result 166, Processing Time 0.031 seconds

Effects of mobile texting and gaming on gait with obstructions under different illumination levels

  • Cha, Jaeyun;Kim, Hyunjin;Park, Jaemyoung;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 2015
  • Objective: This study was conducted to test the effects of mobile texting and gaming on gait with obstructions under different illumination levels. Design: Cross-sectional study. Methods: Twelve healthy adults aged 20 to 36 years (mean 23.5 years) were tested under six different conditions. All participants used touchscreen smartphones. Testing conditions included: 1) Walking with an obstruction under a bright illumination level; 2) walking with an obstruction with a low level of illumination; 3) walking with an obstruction while texting under a bright illumination level; 4) walking with an obstruction while texting with a low level of illumination; 5) walking with an obstruction while gaming under a bright illumination level; and 6) walking with an obstruction while gaming with a low level of illumination. All participants were asked to text the Korean national anthem by their own phone and play Temple Run 2 using an iPhone 5. Gait variances were measured over a distance of 3 m, and the mean value after three trials was used. A gait analyzer was used to measure the data. Results: Compared to normal gait with obstruction, gait speed, step length, stride length, step time, stride time, cadence while texting and gaming showed significant differences (p<0.05). Differences between the illumination levels included gait speed, step length, stride length, and step time (p<0.05) with no significant differences in stride time and cadence. Conclusions: Dual-tasking using a smartphone under low levels of illumination lowers the quality of gait with obstructions.

Accuracy Comparison of Spatiotemporal Gait Variables Measured by the Microsoft Kinect 2 Sensor Directed Toward and Oblique to the Movement Direction (정면과 측면에 위치시킨 마이크로 소프트 키넥트 2로 측정한 보행 시공간 변인 정확성 비교)

  • Hwang, Jisun;Kim, Eun-jin;Hwang, Seonhong
    • Physical Therapy Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Background: The Microsoft Kinect which is a low-cost gaming device has been studied as a promise clinical gait analysis tool having satisfactory reliability and validity. However, its accuracy is only guaranteed when it is properly positioned in front of a subject. Objects: The purpose of this study was to identify the error when the Kinect was positioned at a $45^{\circ}$ angle to the longitudinal walking plane compare with those when the Kinect was positioned in front of a subject. Methods: Sixteen healthy adults performed two testing sessions consisting of walking toward and $45^{\circ}$ obliquely the Kinect. Spatiotemporal outcome measures related to stride length, stride time, step length, step time and walking speed were examined. To assess the error between Kinect and 3D motion analysis systems, mean absolute errors (MAE) were determined and compared. Results: MAE of stride length, stride time, step time and walking speed when the Kinect set in front of subjects were investigated as .36, .04, .20 and .32 respectively. MAE of those when the Kinect placed obliquely were investigated as .67, .09, .37, and .58 respectively. There were significant differences in spatiotemporal outcomes between the two conditions. Conclusion: Based on our study experience, positioning the Kinect directly in front of the person walking towards it provides the optimal spatiotemporal data. Therefore, we concluded that the Kinect should be placed carefully and adequately in clinical settings.

Evaluation of Gait Assistive Devices in Patients with Parkinson's Disease

  • Kim, Mi-Young;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.309-314
    • /
    • 2016
  • Objective: There are no guidelines for choosing appropriate gait assistive devices. The aim of this study was to evaluate gait assistive devices in patients with Parkinson's disease. Method: We evaluated 15 individuals with Parkinson's disease who did or did not use one of two different devices including canes and two-wheeled walkers. Data were collected using the GAITRite system. Results: Participants in the group using canes and two-wheeled walkers had significantly increased double support time and decreased gait velocity, normalized gait velocity, and stride length compared with those who did not. Participants who used a two-wheeled walker had significantly decreased gait velocity, normalized gait velocity, and stride length compared with those who used a cane. Furthermore, participants who used a two-wheeled walker had significantly decreased coefficients of variation for step time, stride length, and swing time compared with those who used a cane. Conclusion: Our results indicated that the two-wheeled walker offered the most consistent advantages for decreasing the risk of falling.

The relationship of between apply presence cervical orthosis and temporal parameters of gait (목보조기의 적용 유무와 보행의 시공간적 변수와의 관계)

  • Choe, Han-Seong;Lee, Jae-Ryong;Shin, Hwa-Kyung
    • Journal of Korean Physical Therapy Science
    • /
    • v.18 no.3
    • /
    • pp.33-39
    • /
    • 2011
  • Background : The purpose of this study was to apply cervical orthosis for temporal parameters of gait was to evaluate the effect. Methods : Seven normal adults participated in this study. Before and after applying a cervical orthosis compared to gait. Outcome measure were: general characteristics, temporal parameters of gait. General chacteristics included age, gender, height, weight. Temporal parameters included the Velocity cycle, Stride length, Step length, Cadence cycle, Initial double support time. Temporal parameters of gait, using the motion analysis system for cervical orthosis were evaluated before and after applying. The data was analyzed using SPSS 12.0 software and the Wilcoxon's signed-ranks test. Results : Velocity cycle and Step length were no significant differences(p>0.05). But Stride length, Cadence cycle, Initial double support time were significant(p<0.05). After apply Cervical orthosis in gait, Stride length and Initial double support time was decreased and Cadence cycle was increased. Conclusion : Changes in temporal of temporal parameters of gait was apply a cervical orthosis with the limitations of vision due to take effect. Therefore, Cervical orthosis does not interfere with the normal gait pattern by limiting the Range of Motion so that we consider to apply.

  • PDF

The Influence of Scapular-Pelvic Patterns of Proprioceptive Neuromuscular Facilitation on Hemiplegic Gait -A Case Report- (PNF 어깨뼈-골반 패턴이 편마비 환자의 보행에 미치는 영향 -증례보고-)

  • Choi, Jae-Won;Hwang, Sin-Pil
    • PNF and Movement
    • /
    • v.16 no.1
    • /
    • pp.27-32
    • /
    • 2018
  • Purpose: This study examined changes in gait speed and stride length after an intervention involving simultaneous scapular and pelvic patterns of proprioceptive neuromuscular facilitation in a hemiplegic patient. Methods: A 58-year-old woman with left hemiplegia who had complained of slowness of gait speed and weakness of leg strength took part in an intervention involving scapular postdepression patterns on the affected side and pelvic postdepression patterns on the nonaffected side. The intervention was performed with the patient lying on her left side, in a half kneeling position, and in a standing posture. Rhythmic initiation was used for teaching the movements to the patient and improvement of kinesthesia, and a combination of isotonic was employed for increasing strength and irradiation of the scapula and pelvic movement. The intervention took place for 30 min. It was implemented twice a day, 5 days a week, for 3 weeks. After three repetitions, the average time taken to complete the 10-m walk test (10 MWT), in addition to stride length, was measured to determine gait speed. Results: After the 3-week program, the patient's performance in the 10 MWT improved from 21.7sec to 17.1sec, and her stride length improved from 31.4cm to 38.7cm. Conclusion: The results showed that trunk movement exercise, especially coordinative movements of the scapula and pelvis can improve gait speed and stride length by increasing trunk stability and mobility. A combination of pelvic and scapular patterns can facilitate trunk rotation, thereby improving gait speed and stride length.

Speed Translation for Walking Biped Robots using LIPM (LIPM 을 이용한 이족 로봇의 보행 속도 변화)

  • Son, Bum-Gyu;Kim, Jin-Tak;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.876-881
    • /
    • 2008
  • When biped robots speed up to run and reduce speed to walk after running, it needs stable speed translation. This paper proposed simple speed translation using the modified LIPM (Linear Inverted Pendulum Mode). We can change stride and period time of a biped robot in some bounded sets with this propose algorithm. This method is simple and effective in simulation.

  • PDF

Modeling & Error Compensation of Walking Navigation System (보행항법장치의 모델링 및 오차 보정)

  • Cho, Seong-Yun;Park, Chan Gook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.221-227
    • /
    • 2002
  • In this paper, the system model for the compensation of the low-cost personal navigation system is derived and the error compensation method using GPS is also proposed. WNS(Walking Navigation System) is a kind of personal navigation system using the number of a walk, stride and azimuth. Because the accuracy of these variables determines the navigation performance, computational methods have been investigated. The step is detected using the walking patterns, stride is determined by neural network and azimuth is calculated with gyro output. The neural network filters off unnecessary motions. However, the error compensation method is needed, because the error of navigation information increases with time. In this paper, the accumulated error due to the step detection error, stride error and gyro bias is compensated by the integrating with GPS. Loosely coupled Kalman filter is used for the integration of WNS and GPS. It is shown by simulation that the error is bounded even though GPS signal is blocked.

Comparison of Walking in Elderly People and Adults Using a Walker Aid with a Pocket Attachment

  • Kwag, Sung-won;Shin, Eun-ji;Park, Jeong-uk;Roh, Hyo-lyun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.3
    • /
    • pp.73-79
    • /
    • 2015
  • PURPOSE: This study aims to examine the impact of the location of a walker-aid pocket that is attached to the walker while walking. METHODS: The research subjects included 10 male adults and 10 elderly people. The subjects used a two-wheeled walker for the walking analysis, and a firm velcro-type pocket that can be attached to the walker aid was used for weight loading. The size of the external loads was set at 2kg, which corresponds to approximately 2.5% of the mean body weight of the subjects. The pocket was attached to the left, center, and right sides of the walker aid. Stride length, stride, step width, and time were investigated according to the location change. RESULTS: No statistical differences were observed in all the walking factors among the adults and elderly people regardless of the changes in the location of the walker pocket. In cases of no weight and the 2kg walker pocket, stride length and strides were longer for the adults, while the step width was greater and walking time was longer for the elderly people. CONCLUSION: The weight of the walker pocket turn out to retard walking speed, although the location of the walker pocket is not affect walking with the walker-aid.

The Effects of Visual Flow Speed's Modulation-Based Virtual Reality Program on Gait Function in Stroke Patients (시각 흐름 속도에 따른 가상현실 프로그램이 뇌졸중 환자의 보행에 미치는 영향)

  • Kang, Hyung-Kyu;Chung, Yi-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.247-253
    • /
    • 2012
  • The purpose of this study was to evaluate the effects of a visual flow speed's modulation-based VR(virtual reality) program on gait function in stroke patients. Thirty one stroke patients were randomly selected at Dep. of Rehabilitation medicine of M hospital in Seoul. We carried out the gait analysis by dividing them with four conditions : one condition had applied without the visual flow modulation-based VR and another had done three visual flow speed's modulation-based VR(0.25, 1, 2 times). The gait analysis was used with GaitRite system. The data were collected using gait velocity, cadence, stride length, step length, single support time, and double support time during treatment. The results were as follows. First, the slow visual flow(0.25 times)-based VR program on the condition was significant decrease gait velocity, cadence, stride length, step length and increase single support time, double support time(p<.05). Second, the fast visual flow(2 times)-based VR program on the condition was significant increase gait velocity, cadence, stride length, step length, single support time on paretic lower limb and decrease single support time on non-paretic lower limb, double support time(p<.05). Third, the normal visual flow(1 times)-based VR program on the condition was not significant differ gait velocity, cadence, stride length, step length, single support time, double support time. In conclusion, the visual flow speed's modulation-based VR program improves gait function in chronic stroke patients.

Effects of Cognitive Task on Stride Rate Variability by Walking Speeds (보행속도변화에 따른 인지 과제 수행이 보행수 변동성에 미치는 영향)

  • Choi, Jin-Seung;Yoo, Ji-Hye;Kim, Hyung-Shik;Chung, Soon-Cheol;Yi, Jeong-Han;Lee, Bong-Soo;Tack, Gye-Rae
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.323-331
    • /
    • 2006
  • The purpose of this study was to investigate the effect of performing a cognitive task during treadmill walking on the stride rate variability. Ten university students(age $24.0{\pm}0.25$, height $172{\pm}3.1cm$, weight $66{\pm}5.3kg$) were participated in dual task experiments which consist of both walking alone and walking with a cognitive task. Two-back task was selected for the cognitive task since it did not have learning effect during the experimental procedure.3D motion analysis system was used to measure subject's position data by changing walking speed with 4.8, 5.6, 6.4, 6.8, and 7.2 km/hr. Stride rate was calculated by the time between heel contact and heel contact. Accuracy rate of a cognitive task during walking, coefficient of variance, allometric scaling methods and Fano factor were used to estimated the stride rate variability. As the walking speed increased, accuracy rate decreased and the logarithmic value of Fano factor increased which showed the statistical difference. Thus it can be concluded that the gait control mechanism is distracted by the secondary attention focus which is the cognitive task ie. two-back task. Further study is needed to clarify this by increasing the number of subject and experiment time.