• Title/Summary/Keyword: Stretch Processing

Search Result 69, Processing Time 0.022 seconds

Minimizing the Total Stretch in Flow Shop Scheduling with Limited Capacity Buffers (한정된 크기의 버퍼가 있는 흐름 공정 일정계획의 스트레치 최소화)

  • Yoon, Suk-Hun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.6
    • /
    • pp.642-647
    • /
    • 2014
  • In this paper, a hybrid genetic algorithm (HGA) approach is proposed for an n-job, m-machine flow shop scheduling problem with limited capacity buffers with blocking in which the objective is to minimize the total stretch. The stretch of a job is the ratio of the amount of time the job spent before its completion to its processing time. HGA adopts the idea of seed selection and development in order to improve the exploitation and exploration power of genetic algorithms (GAs). Extensive computational experiments have been conducted to compare the performance of HGA with that of GA.

Minimizing the Total Stretch in Flow Shop Scheduling

  • Yoon, Suk-Hun
    • Management Science and Financial Engineering
    • /
    • v.20 no.2
    • /
    • pp.33-37
    • /
    • 2014
  • A flow shop scheduling problem involves scheduling jobs on multiple machines in series in order to optimize a given criterion. The flow time of a job is the amount of time the job spent before its completion and the stretch of the job is the ratio of its flow time to its processing time. In this paper, a hybrid genetic algorithm (HGA) approach is proposed for minimizing the total stretch in flow shop scheduling. HGA adopts the idea of seed selection and development in order to reduce the chance of premature convergence that may cause the loss of search power. The performance of HGA is compared with that of genetic algorithms (GAs).

On Lot-Streaming Flow Shops with Stretch Criterion (로트 스트리밍 흐름공정 일정계획의 스트레치 최소화)

  • Yoon, Suk-Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.187-192
    • /
    • 2014
  • Lot-streaming is the process of splitting a job (lot) into sublots to allow the overlapping of operations between successive machines in a multi-stage production system. A new genetic algorithm (NGA) is proposed for an n-job, m-machine, lot-streaming flow shop scheduling problem with equal-size sublots in which the objective is to minimize the total stretch. The stretch of a job is the ratio of the amount of time the job spent before its completion to its processing time. NGA replaces the selection and mating operators of genetic algorithms (GAs) by marriage and pregnancy operators and incorporates the idea of inter-chromosomal dominance and individuals' similarities. Extensive computational experiments for medium to large-scale lot-streaming flow-shop scheduling problems have been conducted to compare the performance of NGA with that of GA.

Study on Stretch Flangeability Test Method with Straight Shear Line Specimen (직선 전단 시편을 이용한 신장 플랜지성 평가법 연구)

  • Han, S.S.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.23-28
    • /
    • 2022
  • Although the hole expansion test is currently the most commonly used method to evaluate the stretch flangeability of HSS, it has been criticized due to its poor repeatability and reproducibility for test results. This paper focuses on the development of a new measurement method to investigate the stretch flangeability of HSS. Two materials (DP590, DP980) were investigated with a hole expansion test and a developed test method. Test results showed that the developed test method could be used as one stretch flangeability test to help identify relevant parameters of the shearing process to avoid edge cracking.

Development of Stretch Forming Apparatus using Flexible Die (가변금형을 이용한 스트레치 성형장치 개발)

  • Seo, Y.H.;Heo, S.C.;Park, J.W.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • A stretch forming method has been widely used in sheet metal forming process. Especially, this process has been adopted in aircraft and high-speed train industries for skin structure forming having a variety of curvature. Until now, solid dies, which are designed with respect to the specific shapes and manufactured as a single piece, have been usually applied to stretch forming process. Therefore, a great number of solid dies has to be developed according to the shapes of the curved skin structure. Accordingly, a flexible die is proposed in this study. It replaces the conventional solid dies with a set of height adjustable punch array. A usefulness of the flexible die is verified through a formability comparison with the solid die using finite element method considering an elastic recovery and the stretch forming apparatus with the flexible die is developed.

Tendency Analysis of Shape Error According to Forming Parameter in Flexible Stretch Forming Process Using Finite Element Method (유한요소법을 이용한 가변스트레치공정 성형변수에 따른 성형오차 경향분석)

  • Seo, Y.H.;Heo, S.C.;Song, W.J.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.486-493
    • /
    • 2010
  • A shape error of the sheet metal product made by a flexible stretch forming process is occurred by a various forming parameters. A die used in the flexible stretch forming is composed of a punch array to obtain the various objective surfaces using only one die. But gaps between the punches induce the shape error and the defect such as a scratch. Forming parameters of the punch size and the elastic pad to prevent the surface defect must be considered in the flexible die design process. In this study, tendency analysis of shape error according to the forming parameters in the flexible stretch process is conducted using a finite element method. Three forming parameters, which are the punch size, the objective curvature radius and the elastic pad thickness, are considered. Finite element modeling using the punch height calculation algorithm and the evaluation method of the shape error, which is a representative value for the formability of formed surface, are proposed. Consequently, the shape error is in proportion to the punch size and is out of proportion to the objective curvature radius and the elastic pad thickness.

Statistical Study on Correlation Between Design Variable and Shape Error in Flexible Stretch Forming (가변스트레치성형 설계변수와 성형오차의 상관관계에 대한 통계적 연구)

  • Seo, Y.H.;Heo, S.C.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.124-131
    • /
    • 2011
  • A flexible stretch forming process is useful for small quantity batch production because various shape changes of the flexible die can be achieved conveniently. In this study, the design variables, namely, the punch size, curvature radius and elastic pad thickness, were quantitatively evaluated to understand their influence on sheet formability using statistical methods such as the correlation and regression analyses. Forming simulations were designed and conducted by a three-way factorial design to obtain numerical values of a shape error. Linear relationships between the design variables and the shape error resulted from the Pearson correlation analysis. Subsequently, a regression analysis was also conducted between the design variables and the shape error. A regression equation was derived and used in the flexible die design stage to estimate the shape error.

Analysis of Forming Processes of PET Bottle using a finite Element Method (유한요소법을 이용한 PET병의 성형 공정 해석)

  • 주성택;김용환;류민영
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.525-533
    • /
    • 2001
  • PET bottles are main]y manufactured by the stretch blow-molding process. In order to improve the thickness distribution to avoid crack generation at bottom region of one-piece PET bottle, process analysis of stretch blow-molding using a finite element method has been carried out. Finite element analysis has been carried out using ABAQUS/Standard. CREEP user subroutine provided in ABAQUS has been used to model PET behavior that is rate sensitive. Among the process parameters, the effect of plunger movement to thickness distribution of bottle has been considered by axisymmetric analysis. A modified process of plunger movement, which yields more uniform thickness distribution, has been proposed. 3D FE analysis has been done to confirm the validity of the proposed process.

  • PDF

Forming Characteristics of Laser Welded Tailored Blanks III : Stretch Forming Characteristics (레이저 용접 테일러드 블랭크의 기본 성형특성 III : 신장성형 특성)

  • Park, Gi-Cheol;Han, Su-Sik;Jin, Jo-Gwan;Gwon, O-Jun
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.354-363
    • /
    • 1998
  • In order to analyze the stretch forming characteristics of tailored blanks, laser welded blanks of different thickness and strength combinations were prepared and stretching tests were done. The stretching formability of laser welded blanks was reduced as increasing the deformation restraining force ($strength{\times}thickness$) ratio between two welded sheets. Weld line movement was attributed to strain concentration at weaker sheets and resulted in fracture at weaker sid, so that fracture could be predicted by the forming limit of the weak sheet. In the case of a welded blank with the similar deformation restraining force rations between two welded sheets, crack occurred at weld and its forming limit was about 15% less than the base sheet. The effects of lubrication and weld line position on stretch-ing formability were also investigated by experiments. Lower friction did not always give better formability for tailored blanks. Stretching formability was observed to be improved as increasing the area of weak sheet.

  • PDF

Non-linear Correlation Between Hole Edge Condition and Hole Expansion Ratio (구멍 파단면 상태와 구멍확장률 간의 비선형 상관관계 분석)

  • Jeong, B.S.;Cho, W.;Park, S.;Jung, J.;Na, H.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.74-82
    • /
    • 2021
  • Stretch-flangeability, which is the ability of sheet steels to be deformed into complex shapes, is a critical formability property in automobile body parts. In this study, the center-hole for hole expansion test, which is normally used to evaluate the stretch-flangeability of sheet steels, was prepared by both punching and electrical discharge machining (EDM) methods. Hole expansion ratio (HER) of punched hole was far lower than the HER of EDM drilled hole because of damage/crack in hole-edge due to punching process. The effect of hole-edge condition on HER was quantified by mechanical, fractographic and geometric factors. Based on these factors, the empirical equation used to determine HER for various sheet steels was derived using non-linear regression.