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Minimizing the Total Stretch in Flow Shop Scheduling with 
Limited Capacity Buffers
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한정된 크기의 버퍼가 있는 흐름 공정 일정계획의 
스트레치 최소화

윤 석 훈

숭실대학교 산업정보시스템공학과

In this paper, a hybrid genetic algorithm (HGA) approach is proposed for an n-job, m-machine flow shop 
scheduling problem with limited capacity buffers with blocking in which the objective is to minimize the total 
stretch. The stretch of a job is the ratio of the amount of time the job spent before its completion to its processing 
time. HGA adopts the idea of seed selection and development in order to improve the exploitation and 
exploration power of genetic algorithms (GAs). Extensive computational experiments have been conducted to 
compare the performance of HGA with that of GA.
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1. Introduction

The flow manufacturing line have been considered as a basic 
device for modern automated production systems and mod-
eled by flow shop scheduling. The recent survey has pointed 
out the significance of no-wait and limited capacity buffers 
in modern systems such as just-in-time system and flexible 
manufacturing system (Liu et al., 2007).

Nowicki (1999) deals with the makespan minimization for 
the permutation flow shop problem with limited capacity buf-
fers. He proposes a local search technique using a non-trivial 
generalization of the block elimination properties. Smutnicki 
(1998) presents a tabu search based approximation algorithm 
for the makespan minimization flow shop scheduling prob-
lem in a two machine with finite capacity buffers. Liu et al. 
(2007) propose a hybrid algorithm based on particle swarm 
optimization for the permutation flow shop scheduling prob-

lem with the limited buffers to minimize the makespan. Qian 
et al. (2009) propose a hybrid algorithm based on differential 
evolution for permutation flow shop scheduling with limited 
capacity buffers to minimize the makespan. Agnetis et al. 
(1997) deal with the makespan minimization problem in a 
two machine flow shop with limited capacity buffer. They 
show that in some conditions of a batch size, the problem can 
be formulated as a special case of the traveling salesman pro-
blem and solved in polynomial time. Pranzo (2004) inves-
tigates the makespan minimization problem in a two machine 
flow shop with limited capacity buffer and sequence indepen-
dent setup times and removal times. He shows that in some 
conditions on the batch sizes, the problem can be solved in 
polynomial time by defining a suitable instance of no-wait 
flow shop. Norman (1999) investigates the flow shop sched-
uling with sequence dependent setup times and finite buffers, 
in which the objective is to minimize the makespan. He pro-
poses a tabu search based solution procedure. Wang and Tang 
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(2007) investigate the hybrid flow shop scheduling with fi-
nite intermediate buffers, whose objective is to minimize the 
total weighted completion times. They propose a tabu search 
heuristic based on the scatter search mechanism. Wardono 
and Fathi (2004) investigate the scheduling problem on par-
allel machines in successive stages with limited buffer ca-
pacities. They propose a tabu search algorithm in which the 
search is limited to the space of permutation vectors.

Traditionally, the focus of performance measure has been 
on the maximal completion time and the flow time. Recently, 
alternative performance measures have been considered and 
among them, the stretch measure has received a lot of atten-
tion (Chan et al., 2006). The stretch of a job formally is de-
fined as the ratio of its flow time to its required processing 
time (Bender et al., 2004). The stretch measure relates the 
jobs’ waiting times to their processing times, and may reflect 
users’ psychological expectation that, in a system with highly 
various job sizes, users are willing to wait longer for larger 
jobs (Muthukrishnan et al., 2005).

Since the problem of minimizing the total stretch with dif-
ferent job release times is not tractable even for a single ma-
chine, the computational effort to solve an instance of a prob-
lem grows remarkably quickly as the number of jobs in-
creases (Pinedo, 2012). Thus, if the number of jobs is large, it 
is necessary to consider meta-heuristic methods such as ge-
netic algorithms, simulated annealing, and tabu search (Dreo 
et al., 2005). 

This paper presents a solution methodology for an n-job, 
m-machine flow shop scheduling problem with limited ca-
pacity buffers in which the objective is to minimize the total 
stretch. In the next section, the problem and notations are 
defined. By adopting new genetic operators (seed selection 
and development), HGA is proposed to solve the problem in 
section 3. In section 4, the results of extensive computational 
experiments comparing HGA and GA are provided. Finally, 
a summary of main results and conclusions are provided in 
Section 5.

2. Minimization of the Total Stretch 
in the n-Job, m-Machine Flow Shop 
with Limited Capacity Buffers

For job j,  j = 1, ···, n, let rj be the release time, pij the proc-
essing time on machine i, i = 1, …, m. Let pj be the sum of 
processing times of job j (= p1j + p2j + ··· + pmj). If the com-
pletion time of job j on machine i is cij, then the stretch sj = 
(cmj - rj)/pj. Let individual     ⋯ , l 
= 1, …, w, represents a job sequence where  = j, k = 1, 
…, n, implies that job j is positioned kth in the sequence. Let 
    represent the completion time of the kth job on ma-
chine i for individual  . Let  be the size (capacity) of the 
buffer between machines i and i+1; that is,  is the max-

imum number of jobs that can be placed in the buffer at any 
time.

In a flow shop with blocking, a machine can process a job 
even if the downstream buffer is full. When the processing of 
the job finishes, it is required to wait in the machine’s work-
ing area until the buffer is no longer full. The blocked ma-
chine can start processing another job when the downstream 
buffer releases at least one job to the next machine. Let    
be the starting time of job j on machine i (that is,      
 ). Job     can start its processing on machine i 
if job        starts its processing on machine 
i+1; that is,   ≥       . Equivalently, this 
can be represented as follows:

         ≥          ,
   ⋯        ⋯ .

For a given sequence  , the problem can be formulated as 
follows :

minimize     
 





   ; (1)

subject to 
         ≤          , 

for    ⋯   ,      ⋯ ;   (2)
     ≥    , 

for    ⋯  ,    ⋯ ;                  (3)
     ≥    ,

for    ⋯  ,    ⋯ ;        (4)
     ≥  ,

for    ⋯  ,    ⋯ ;       (5)

Constraint set (2) provides the relationships between jobs 
on a machine and the downstream machine when the down-
stream buffer is full. Constraint set (3) establishes the rela-
tionships between completion times of adjacent jobs on each 
machine and assures that a machine can process at most one 
job at the same time. Constraint set (4) insures that each job 
on the current machine cannot be transferred to the next ma-
chine before its processing is finished. Constraint set (5) 
states that all jobs are available at their release time.

3. Hybrid GA Approach

GAs are stochastic search methods designed to search large 
and complex spaces by exploitation of solutions and a robust 
exploration of the space (Lee et al., 1997). GAs start with a 
collection (population) of solutions (individuals). With the 
survival of the fittest philosophy, GAs select individuals in a 
population to form a mating pool according to their fitness 
values. Individuals in the mating pool are randomly mated to 
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become couples and each couple goes through the crossover 
and mutation process to produce two new solutions (offsp-
ring). The set of all these new born offspring becomes the 
population of the next iteration (generation). The population 
size remains fixed in all generations and the process con-
tinues until a predetermined termination criterion is satisfied 
(Bhattacharyya, 1999).

HGA uses a permutation representation for individuals, 
where a sequence of n jobs is defined by a permutation of in-
tegers {1,…, n}. Most individuals in an initial population are 
generated randomly. The rest of the initial population are 
generated by the seed selection process, which is based on 
two steps: firstly, rules to generate the initial sequences such 
as the shortest release time, the shortest processing time on 
the first machine, and the shortest total processing times, and 
secondly, neighborhood search mechanisms such as the non- 
adjacent pairwise interchange, the extraction and forward 
shifted reinsertion, and the extraction and backward shifted 
reinsertion. Balancing the ratio of individuals of these two 
types enhances robust exploitation and exploration of good 
quality of solutions.

Mostly used methods to obtain fitness values of individuals 
in the literature are fitness value by scale and fitness value by 
rank (Liepins and Hilliard, 1989). Fitness value by scale 
(fscale) can be obtained as follows :

          ,
                           for l = 1,…, w,

where zmax, zmin and zavg are the maximum, minimum and 
average objective values in the current population, respecti-
vely, w is the population size, and    is the objective val-
ue of individual l. Fitness value by rank (frank) can be ob-
tained as follows :

     , for l = 1,…, w,

where    is the lth individual in a descending order of ob-
jective function values.

To determine the expected number of copies of individual l 
for a mating pool, E(l), HGA uses the stochastic remainder 
selection procedure without replacement. E(l) can be calcu-
lated as follows :

   
 



,

where   is the fitness value of individual l. 󰀚E(l) 󰀛 
copies of individual l, l = 1,…, w, are assigned to the mating 
pool. If E(l) is not integer, Bernoulli trials with success prob-
abilities Ps(l) = E(l)-󰀚E(l) 󰀛are performed to individual l 
one by one until the mating pool is full. When individual l is 
selected, Ps(l) is reduced to 0.

Individuals in a mating pool are mated randomly and go 

through crossover and mutation process. HGA uses the parti-
ally matched crossover (PMX) for crossover (Goldberg, 1989). 
Two crossover points are picked at random and the genes be-
tween these two points are swapped and used to construct a 
match table. The genes before the first crossover point and 
after the second one are exchanged if the genes are included 
in the table. The process to construct the table and swapping 
genes between two individuals are explained below. For ex-
ample, suppose that A and B are the individuals chosen for 
crossover such that A = (8 3 7 1 2 6 4 5) and B = (3 7 4 2 8 5  
1 6), and the two crossover points are 3 and 6. First, the 
genes between two crossover points are swapped (1, 2, 6 of 
A and 2, 8, 5 of B). Second, the genes in the same positions 
between two crossover points are compared to construct the 
match table. The comparison (1 ↔ 2, 2 ↔ 8, 6 ↔ 5) results 
in the match table (1 ↔ 8, 6 ↔ 5). According to the table, if 
genes have the value 1, 8, 6, and 5, they are exchanged into 
8, 1, 5, and 6, respectively. Thus, the resulting individuals by 
PMX are A’ = (1 3 7 2 8 5 4 6) and B’ = (3 7 4 1 2 6 8 5). 
HGA adopts the adjacent swap method for the mutation 
process, in which a job is exchanged with the next job in the 
job sequence. If the last job is to be mutated, it is exchanged 
with the first job in the job sequence.

The stochastic remainder selection procedure without re-
placement limits the maximum number of copies of individual 
l in the mating pool and thus, high fit individuals cannot pre-
vail in the early generations. However, using this selection 
scheme may increase the probability of selecting the least fit 
individuals in comparison with other selection schemes such 
as the roulette wheel selection method. The selection of the 
least fit individuals may provide low fit offspring and as a re-
sult, may decrease the search power for the best solutions. 
HGA applies a non-adjacent pairwise interchange (NAPI) 
method to the least fit individual in the mating pool, and re-
places the least fit individual by the best individual in its 
neighborhood.

Hybrid Genetic Algorithm (HGA)
Step 0 (Initialization)
In a preliminary test, the best set of following parameters is 
determined before the main test : determination of fitness val-
ues (fscale, frank), population size (w), number of generations 
(GEN), crossover probability (Pc), mutation probability (Pm), 
number of seed selection individuals (Ns)

Step 1 (Construction of an initial population)
(a) Generate w-Ns individuals using a random number enerator.
(b) Generate Ns individuals by seed selection

Step 2 (Evaluation and selection)
(a) Obtain objective values of individuals in the population
(b) Compute the fitness values of individuals in the population.
(c) Use the stochastic remainder sampling without replacement 

to select individuals from the population to form a mating 
pool.
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Table 2. Results for medium and large size, limited/infinite capacity buffer problems
(a) Buffer size of one

No. of Jobs No. of machines
GA method HGA method % Dev

(zg-zh/zg)×100Avg. obj. value (zg) Avg. obj. value (zh)

10

2
3
4
5

27.12
22.73
20.81
19.28

26.37
22.26
20.07
18.64

2.79
2.06
3.56
3.33

15

2
3
4
5

54.85
46.01
41.36
36.53

52.03
43.55
37.54
34.79

5.15
5.33
9.22
4.75

20

2
3
4
5

103.85
78.24
67.30
59.43

86.29
71.99
61.52
56.09

16.91
7.98
8.59
5.61

30

2
3
4
5

229.42
169.95
146.37
125.72

189.98
150.87
129.10
115.12

17.19
11.23
11.80
8.44

Average 78.06 69.76 7.75

Table 1. Data used to generate test problems (all 
data are integers)

Data Value

Number of jobs (NJ) 5, 7, 10, 15, 20, 30

Number of machines (NM) 2, 3, 4, 5

Job processing times on machines Uniform (1, 31)

Job release times Uniform (1, 6)

Step 3 (Development)
Apply the NAPI method the least fit individual selected in 
Step 2(c). Replace the least fit individual by the best in-
dividual obtained by the NAPI.

Step 4 (Reproduction)
(a) Mate individuals in the mating pool randomly.
(b) Apply PMX to the couples.
(c) Apply the adjacent swap method to the offspring 

produced in (b).

Step 5 (Termination test)
If HGA reaches GEN, stop. Otherwise, go to Step 2.

4. Computational Study

The HGA and GA were coded in Visual FORTRAN and ran 
on an Intel Core i7 CPU@3.4 GHz PC. Since no sample 
problems were found in the literature that could be used as a 
benchmark for testing the proposed HGA, the test problems 
were generated randomly for buffers with 1, 2, and infinite 
capacity. Processing times and release times of jobs for the 
test problems were generated randomly according to the in-
teger uniform distributions provided in <Table 1>. 

The experiments were divided into two parts : a prelimi-
nary test and a main test. Since the performances of GA and 
HGA are influenced by several control parameters, a prelimi-

nary test is necessary to achieve the best parameter set for 
GA and HGA. In the preliminary test, 5 test problems of dif-
ferent sizes generated according to the data in <Table 1> 
were solved. The best average objective function value was 
obtained by using the fitness function by rank, a total of 10 
seed individuals, a population size of 100, a total of 100 gen-
erations, a crossover rate of 1.0, and a mutation rate of 0.01.

The test problems for the main test were generated in a 
similar way. Eight different test problems were generated for 
each problem size. These 192 problems were solved by HGA. 
For small size flow shop problems (5 and 7 jobs and 2～5 
machines), the results of HGA were compared with the opti-
mal solutions obtained by exhaustive search. HGA achieved 
optimal solutions for all small size problems. HGA was ap-
plied to medium size (10 and 15 jobs and 2～5 machines) 
and large size (20 and 30 jobs and 2～5 machines) problems. 
To evaluate the performance of HGA, the solutions obtained 
by HGA were compared with the solutions provided by GA. 
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(b) Buffer size of two

No. of Jobs No. of machines
GA method HGA method % Dev

(zg-zh/zg)×100Avg. obj. value (zg) Avg. obj. value (zh)

10

2
3
4
5

26.86
23.14
20.28
19.19

26.37
22.34
19.98
18.59

1.86
3.28
1.96
3.55

15

2
3
4
5

56.57
47.29
40.35
36.52

51.91
42.84
37.04
34.61

8.47
9.72
7.21
5.52

20

2
3
4
5

97.61
79.29
68.36
59.82

85.58
71.98
61.80
55.69

12.09
8.92
9.38
7.07

30

2
3
4
5

227.67
169.98
144.32
129.01

187.59
148.87
127.93
111.43

23.64
11.46
10.37
13.44

Average 77.89 69.03 8.38

(c) Buffer size of infinite

No. of Jobs No. of machines
GA method HGA method % Dev

(zg-zh/zg)×100Avg. obj. value (zg) Avg. obj. value (zh)

10

2
3
4
5

27.00
23.45
20.73
19.15

26.36
22.11
20.01
18.59

2.35
5.73
3.50
2.92

15

2
3
4
5

56.58
45.27
39.63
36.16

51.81
42.84
36.86
34.04

8.42
5.37
6.99
5.86

20

2
3
4
5

99.68
80.67
68.67
61.39

84.77
71.90
61.02
55.80

14.95
10.88
11.14
9.11

30

2
3
4
5

227.75
170.16
145.65
122.62

183.10
144.82
124.38
111.12

19.60
14.89
14.60
9.38

Average 77.78 68.10 9.11

The results of HGA and GA for medium and large size prob-
lems are shown in <Table 2>. The average objective function 
values reported in <Table 2> are the average values of eight 
instances for each problem size. Based on these results, HGA 
provides an 7.75, 8.38, and 9.11% improvement on the aver-
age for buffer sizes one, two, and infinite, respectively with 
comparison with GA .

5. Conclusions

In this paper, HGA has been proposed to prevent the pre-
mature convergence of GAs and maintain the search power 
by adopting the seed selection and the development process. 
By these new processes, HGA restrains the high fitness in-
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dividuals from dominating populations in early generations. 
Extensive computational experiments have been conducted 
to compare the performance of HGA and that of GA. These 
results show that the average improvement of HGA over GA 
is 8.41% for different buffer size problems.
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