• 제목/요약/키워드: Stress-strain Relationship

검색결과 604건 처리시간 0.028초

초고강도 콘크리트에 적합한 응력-변형율 모델과 응력분포 모델의 제안 (A Proposal of New Model for Stress-Strain Relationship and Stress Distribution of Ultra High-Strength Concrete)

  • 장일영;박훈규
    • 콘크리트학회지
    • /
    • 제9권5호
    • /
    • pp.197-206
    • /
    • 1997
  • 본 연구에서는 기존의 초고강도 콘크리트에 대한 실험자료를 근거로 합리적인 통계적 기법을 이용하여 초고강도 콘크리트의 설계 실용화를 위한 응력-변형율 관계 모델과 응력분포 모델을 제안하는 것이 목적이다. 이를 위하여 첫째, 콘크리트의 응력-변형율 특성을 결정하는 재료 변수들(탄성계수, 최대 압축강도시 변형율 등)에 대한 검토를 수행하였다. 둘째, 이를 바탕으로 일반성과 정확성을 동시에 갖춘 초고강도 콘크리트(700~1400kg/$\textrm{cm}^2$)에 적합한 응력-변형율 모델을 제안, 비교, 고찰하엿다. 셋째, 제안된 응력-형율 모델로부터 초고강도 콘크리트 구조의 극한강도를 평가하기에 적합한 응력분포모델을 제안, 일반성과 정확성을 비교 검증하였다.

Mix Design and Properties of Recycled Aggregate Concretes: Applicability of Eurocode 2

  • Wardeh, George;Ghorbel, Elhem;Gomart, Hector
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.1-20
    • /
    • 2015
  • This work is devoted to the study of fresh and hardened properties of concrete containing recycled gravel. Four formulations were studied, the concrete of reference and three concretes containing recycled gravel with 30, 65 and 100 % replacement ratios. All materials were formulated on the basis of S4 class of flowability and a target C35 class of compressive strength according to the standard EN 206-1. The paper first presents the mix design method which was based on the optimization of cementitious paste and granular skeleton, then discusses experimental results. The results show that the elastic modulus and the tensile strength decrease while the peak strain in compression increases. Correlation with the water porosity is also established. The validity of analytical expressions proposed by Eurocode 2 is also discussed. The obtained results, together with results from the literature, show that these relationships do not predict adequately the mechanical properties as well as the stress-strain curve of tested materials. New expressions were established to predict the elastic modulus and the peak strain from the compressive strength of natural concrete. It was found that the proposed relationship E-$f_c$ is applicable for any type of concrete while the effect of substitution has to be introduced into the stress-strain (${\varepsilon}_{c1}-f_c$) relationship for recycled aggregate concrete. For the full stress-strain curve, the model of Carreira and Chu seems more adequate.

불포화토에 대한 반복삼축압축시험의 요소시뮬레이션을 위한 응력-변형율 관계의 수립 (Inducing stress-strain relationship for element simulation of cyclic triaxial test on unsaturated soil)

  • 이충원
    • 한국산학기술학회논문지
    • /
    • 제16권8호
    • /
    • pp.5654-5663
    • /
    • 2015
  • 부(-)의 간극수압으로서 불포화토 내에 작용하는 석션은 입자간 응력을 증가시키며, 이에 따라 토립자 골격의 항복응력 및 소성전단강성을 증대시키는 등, 불포화토의 역학적 특성에 지대한 영향을 미친다. 따라서, 본 연구에서는 이러한 석션의 효과를 지진 등의 동적 하중조건에서 고려하기 위하여 불포화토에 대해 확장된 반복탄소성구성식에 근거한 응력-변형율 관계를 제 1 항복함수 및 제 2 항복함수를 고려하여 유도하였다. 본 관계를 2차원 및 3차원 수치해석에서 액상화 이후의 압밀거동 예측 등에 적용하는 경우에는 평균골격응력(Mean skeleton stress)의 변화를 반영하는 제 2 항복함수의 도입이 필요하나, 요소시뮬레이션에서는 제 1 항복함수만으로도 수치해석을 위한 각 물성치 및 석션 파라미터 결정이 가능할 것으로 사료된다. 본 관계와 응력반전을 반영한 반복재하 루틴을 함께 코딩(Coding)할 경우 불포화조건 하에서의 반복삼축압축시험에 대한 수치해석적 모사가 가능할 것으로 보이며, 본 연구결과는 동적 하중이 작용하는 불포화토 거동 예측의 정확도 제고에 기여할 것으로 전망된다.

Experimental study on axial compressive behavior of hybrid FRP confined concrete columns

  • Li, Li-Juan;Zeng, Lan;Xu, Shun-De;Guo, Yong-Chang
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.395-404
    • /
    • 2017
  • In this paper, the mechanical property of CFRP, BFRP, GFRP and their hybrid FRP was experimentally studied. The elastic modulus and tensile strength of CFRP, BFRP, GFRP and their hybrid FRP were tested. The experimental results showed that the elastic modulus of hybrid FRP agreed well with the theoretical rule of mixture, which means the property of hybrid composites are linear with the volumes of the corresponding components while the tensile strength did not. The bearing capacity, peak strain, stress-strain relationship of circular concrete columns confined by CFRP, BFRP, GFRP and hybrid FRP subjected to axial compression were recorded. And the confinement effect of hybrid FRP on concrete columns was analyzed. The test results showed that the bearing capacity and ductility of concrete columns were efficiently improved through hybrid FRP confinement. A strength model and a stress-strain relationship model of hybrid FRP confined concrete columns were proposed. The proposed stress-strain model was shown to be capable of providing accurate prediction of the axial compressive strength of hybrid FRP confined concrete compared with Teng et al. (2002) model, Karbhari and Gao (1997) model and Miyachi et al. (1999) model. The modified stress-strain model was also suitable for single FRP confinement cases and it was so concise in form and didn't have piecewise fitting, which would be easy for use in structural design.

Mechanical Performance and Stress-Strain Relationships for Grouted Splices Under Tensile and Cyclic Loadings

  • Lin, Feng;Wu, Xiaobao
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.435-450
    • /
    • 2016
  • Experimental studies were conducted on 36 grouted splices to investigate their mechanical performance under four loading schemes: (1) incremental tensile loading, (2) repeated tensile loading, (3) cyclic loading at high stress, and (4) cyclic loading at large strain. Load-deformation responses of the grouted splices under cyclic loadings were featured with pinching effect and stiffness degradation compared to those responses under tensile loadings. The shape of the hysteresis loops of load-deformation curves was similar to that under incremental tensile loading. For the purpose of structural analysis, stress-strain relationships were presented for grouted splices under various loadings.

고무재료의 이축 인장시험에 관한 연구 (A Study on the Equi-biaxial Tension Test of Rubber Material)

  • 김동진;김완두;김완수;이영신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.425-430
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a perfect state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was turned out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

  • PDF

Modelling the hydraulic/mechanical behaviour of an unsaturated completely decomposed granite under various conditions

  • Xiong, Xi;Xiong, Yonglin;Zhang, Feng
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.75-87
    • /
    • 2021
  • Because the hydraulic/mechanical behaviour of unsaturated soil is more complicated than that of saturated soil, one of the most important issues in modelling unsaturated soil is to properly couple its stress-strain relationship with its water retention characteristics. Based on the results of a series of tests, the stress-strain relationship and the changes in suction and saturation of unsaturated completely decomposed granite (CDG, also called Masado) vary substantially under different loading/hydraulic conditions. To precisely model the hydraulic/mechanical behaviour of unsaturated Masado, in this study, the superloading concept was firstly introduced into an existing saturated/unsaturated constitutive model to consider the structural influences. Then a water retention curve (WRC) model considering the volumetric change in the soil, in which the skeleton and scanning curves of the water retention characteristics were assumed to shift in parallel in accordance with the change in the void ratio, was proposed. The proposed WRC model was incorporated into the constitutive model, and the validity of the newly proposed model was verified using the results of tests conducted on unsaturated Masado, including water retention, oedometer and triaxial tests. The accuracy of the proposed model in describing the stress-strain relationship and the variations in suction and saturation of unsaturated Masado is satisfactory.

복합재료에 의하여 구속된 콘크리트 기둥의 응력-변형률 관계에 대한 실험적 연구 (An Experimental Study on the Stress-Strain Relationship of Concrete Columns Confined with Composite Materials)

  • 오영준;황현복;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.194-197
    • /
    • 2003
  • The stress-strain curve of concrete confined with both lateral ties and carbon fiber sheet(CFS) is different to that of concrete confined with only lateral ties or CFS. The objective of this study is to investigate the stress-strain relation of reinforced concrete columns confined by composite material. The main variable of the specimens was the content rate of lateral ties to CFS. In the test a total 24 rectangular specimens, which are all 148$\times$148$\times$300mm size. The test results indicated that while the compressive strength of specimens confined with both lateral ties and CFS increased proportionally to the aided amount of two materials, the maximum strain of specimens depended on the larger strain of lateral ties or CFS.

  • PDF

탄소섬유쉬트와 나선형철근으로 동시에 구속된 콘크리트의 응력-변형률 관계에 대한 실험적 연구 (An Experimental Study on the Stress-Strain Relationship of Concrete Confined with Spiral & Carbon Fiber Sheets)

  • 정훈식;오영준;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.537-542
    • /
    • 2003
  • The stress-strain curve of concrete confined with both spiral and carbon fiber sheet(CFS) is different to that of concrete confined with only spiral or CFS. The objective of this study is to investigate the stress-strain relation of concrete confined by composite material. In this study, 24 concrete cylinders were tested. The main variable of the cylinders was the content rate of spiral to CFS. The test results indicated that while the compressive strength of cylinder confined with both spiral and CFS increased proportionally to the aided amount of two materials, the maximum strain of cylinder depended on the larger strain of spiral or CFS.

  • PDF

유리섬유 강화 열가소성 복합재료의 응력-변형률 관계 (The Stress-strain Relationship of Glass Fiber Reinforced Thermoplastic Composite)

  • 이중희
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.206-214
    • /
    • 1996
  • Because of the wide variety of the composite materials, inherent variability in properties, and complex temperature and strain rate dependence, large strain behavior of these materials has not been well characterized. Large strain behavior under uniaxial tension is characterized over a range of temperatures and strain rates, and a modified simple linear viscoelastic model is fit to the observed data. Of particular importance is the strain rate and temperature dependence of these composites, and it is the primary focus of this study. The strain rate and temperature dependence is then used to predict limiting tensile strains, based on Marciniak imperfection theory. Excellent correlation was obtained between model and experiment and the results are summarized in maps of forming limit as a function of strain rate and temperature.

  • PDF