• Title/Summary/Keyword: Stress-related gene expression

Search Result 277, Processing Time 0.028 seconds

Protective Effect of Ginsenoside Rb1 on Hydrogen Peroxide-induced Oxidative Stress in Rat Articular Chondrocytes

  • Kim, Sok-Ho;Na, Ji-Young;Song, Ki-Bbeum;Choi, Dea-Seung;Kim, Jong-Hoon;Kwon, Young-Bae;Kwon, Jung-Kee
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • The abnormal maturation and ossification of articular chondrocytes play a central role in the pathogenesis of osteoarthritis (OA). Inhibiting the enzymatic degradation of the extracellular matrix and maintaining the cellular phenotype are two of the major goals of interest in managing OA. Ginseng is frequently taken orally, as a crude substance, as a traditional medicine in Asian countries. Ginsenoside $Rb_1$, a major component of ginseng that contains an aglycone with a dammarane skeleton, has been reported to exhibit various biological activities, including anti-inflammatory and anti-tumor effects. However, a chondroprotective effect of ginsenoside $Rb_1$ related to OA has not yet been reported. The purpose of this study was to demonstrate the chondroprotective effect of ginsenoside $Rb_1$ on the regulation of pro-inflammatory factors and chondrogenic genes. Cultured rat articular chondrocytes were treated with 100 ${\mu}M$ ginsenoside $Rb_1$ and/or 500 ${\mu}M$ hydrogen peroxide ($H_2O_2$) and assessed for viability, reactive oxygen species production, nitric oxide (NO) release, and chondrogenic gene expression. Ginsenoside $Rb_1$ treatment resulted in reductions in the levels of pro-inflammatory cytokine and NO in $H_2O_2$-treated chondrocytes. The expression levels of chondrogenic genes, such as type II collagen and SOX9, were increased in the presence of ginsenoside $Rb_1$, whereas the expression levels of inflammatory genes related to chondrocytes, such as MMP1 and MMP13, were reduced by approximately 50%. These results suggest that ginsenoside $Rb_1$ has potential for use as a therapeutic agent in OA patients.

Mechanisms of Cadmium Carcinogenicity in the Gastrointestinal Tract

  • Bishak, Yaser Khaje;Payahoo, Laleh;Osatdrahimi, Alireza;Nourazarian, Alireza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.9-21
    • /
    • 2015
  • Cancer, a serious public health problem in worldwide, results from an excessive and uncontrolled proliferation of the body cells without obvious physiological demands of organs. The gastrointestinal tract, including the esophagus, stomach and intestine, is a unique organ system. It has the highest cancer incidence and cancer-related mortality in the body and is influenceed by both genetic and environmental factors. Among the various chemical elements recognized in the nature, some of them including zinc, iron, cobalt, and copper have essential roles in the various biochemical and physiological processes, but only at low levels and others such as cadmium, lead, mercury, arsenic, and nickel are considered as threats for human health especially with chronic exposure at high levels. Cadmium, an environment contaminant, cannot be destroyed in nature. Through impairment of vitamin D metabolism in the kidney it causes nephrotoxicity and subsequently bone metabolism impairment and fragility. The major mechanisms involved in cadmium carcinogenesis could be related to the suppression of gene expression, inhibition of DNA damage repair, inhibition of apoptosis, and induction of oxidative stress. In addition, cadmium may act through aberrant DNA methylation. Cadmium affects multiple cellular processes, including signal transduction pathways, cell proliferation, differentiation, and apoptosis. Down-regulation of methyltransferases enzymes and reduction of DNA methylation have been stated as epigenetic effects of cadmium. Furthermore, increasing intracellular free calcium ion levels induces neuronal apoptosis in addition to other deleterious influence on the stability of the genome.

Protective Effect of Fermented Brassica Puree on HCl/Ethanol-Induced Acute Gastritis via Prevention of Gastric Mucosal Injury (염산/에탄올로 유도된 급성 위염 동물모델에서 십자화과 생즙 발효물의 위점막 보호 효과)

  • Park, Yang-Gyu;Cho, Jeong-Hwi;Choi, Jinyoung;Kim, Youngpil;Lee, Sang-yeob;Park, Ju-Hun;Oh, Hong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.468-476
    • /
    • 2021
  • In recent years, there has been an increase in the morbidity of gastritis in Korea due to lifestyle factors mostly changes in eating habits and stress. Gastritis is more likely to progress to gastric cancer, and therefore it is important to prevent and manage gastritis through lifestyle adjustment and treatment at an early stage. In this study, cabbage, which was found to be effective in gastritis, was mixed and fermented with other crucifer plants such as kale and broccoli to evaluate the overall efficacy of fermented brassica puree on alcoholic acute gastritis. Based on our results, fermented brassica puree alleviated gastric injury induced by 150 mM HCl/60% ethanol. In addition, it was confirmed that PGE2, a gastric mucosal protective factor, was increased, and other positive effects such as an increase of MUC1 and regulation of PKC were observed. The results of this study suggest that fermented brassica puree can relieve acute alcoholic gastritis by regulating PGE and the expression of MUC1, a gene related to mucus secretion, and activating PKC, which is related to mucosal cell activity.

Genes profile related to modulation of natural killer cell activity induced by electroacupuncture (전침이 자연살해세포 활성에 미치는 유전자 발현 profile에 대한 연구)

  • Choi, Gi-soon;No, Sam-woong;Oh, Sang-deog;Bae, Hyun-su;Ahn, Hyun-jong;Ha, Yoon-mun;Kim, Kwang-ho;Min, Byung-il
    • Journal of Acupuncture Research
    • /
    • v.19 no.6
    • /
    • pp.111-124
    • /
    • 2002
  • A line of study reported that electroacupuncture(EA) modulate natural killer cell(NK Cell) activities. One report suggested that EA enhanced splenic interferon-gamma($IFN-{\gamma}$), interleukin-2(IL-2), and NK cell activity in Sprague-Dawley rats. Another study suggested that $IFN-{\gamma}$ mediates the up-regulation of NK cell activity, and endogenous ${\beta}$-endorphin secretion also play a role in the up-regulation of NK cell activity induced by EA stimulation. In order to better understand the molecular regulation underlying the activation of NK cell induced by EA, we have utilized cDNA microarray to elucidate how EA alters program of gene expression of spleen in rats. First, we divided three groups, group I was EA group treated with EA in restriction holder, group II was sham group with only holder stress, and last group III was control group with no treatment. We measured NK cell activity after EA stimulation three times for 2 days using $^{51}Cr$ release assay. Second, Biotin-labeled cDNA probes synthesized from EA group and sham group, were competitively hybridized to the microarray that contained variable genes. Such high-throughput screening has identified a number of EA-responsive gene candidates. Of these, we found that EA induced a subset of genes of genes that functionally could modulatory effects on NK cell activity. Genes(vascular cell adhesion molecule-1, protein-tyrosine kinase, CD94 mRNA) related to boost NK cell activity, were increased by EA And, genes(protein-tyrosine-phospatase mRNA, protein-tyrosine phosphatase(SHP-1) mRNA) related to inhibit NK cell activity, were decreased by EA. These EA-responsive genes may provide key insights from which to understand mechanisms of activation of NK cell induced by EA.

  • PDF

Study on the Genetic Characteristics of Waterlogging Tolerant Pepper (Capsicum annuum L.) for Breeding Tolerant Varieties against Flooding Stress (내습성 고추 품종 육성을 위한 선발계통의 유전적 특성 구명)

  • Yang, Eun Young;Chae, Soo-Young;Hong, Jong-Pil;Lee, Hye-Eun;Park, Eun Joon;Moon, Ji-hye;Park, Tae-Sung;Roh, Mi-Young;Kim, Ok Rye;Kim, Sang Gyu;Kim, Dae Young;Lee, Sun Yi;Cho, Myeong Cheoul
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1111-1120
    • /
    • 2017
  • This study was conducted to select pepper lines that were tolerant to excessive water injury among the pepper germplasm and investigate the genetic characteristics of those lines to contribute to the breeding of pepper cultivars with stable productivity in abnormal weather. Each of the tolerant and susceptible lines went through immersion treatment, and differentially expressed genes between them were analyzed. The tolerant line showed increased expression of the CA02g26670 gene, which is involved in the CONSTANS protein pathway and regulation of flowering by day length, but it exhibited decreased expressions of CA01g21450, CA01g22480, CA01g34470, CA02g00370 and CA02g00380. The susceptible line showed increased gene expressions of CA02g09720, CA02g21290, CA03g16520, CA07g 02110, and CA12g17910, which are involved in the inhibition of proteolytic enzyme activity, DNA binding, inhibition of cell wall-degrading enzyme, and inhibition of nodulin, respectively. Meanwhile the expressions of CA02g02820, CA03g21390, CA06g17700 and CA07g18230 decreased in the susceptible line, in relation to calcium-ion binding, high temperature, synthesis of phosphocholine and cold stress, respectively. The expressions of genes related to apoptosis and peroxidase increased, while that of CA02g16990, which functions as a nucleoside transporter, decreased in both the tolerant and susceptible lines. Based on the different gene expressions between the tolerant and susceptible lines, further studies are needed on breeding abiotic stress-tolerant lines.

Current Research Status on the Development of Genetically Modified Plants in Korea (유전자변형식물의 국내 연구 현황)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In an attempt to evaluate the current research status of genetically modified (GM) plants, the scientific research publications in Korea as well as in international SCI journals were screened. About 190 research articles related to the development of GM plants were searched from 10 different domestic journals in the last 12 years (Jan. 1990 to Sept. 2002), The researches in 65 articles were carried out with tobacco plant, 20 with rice, 19 with potatoes, and less then 9 articles from each other plant species, respectively, In total, 38 different plant species were being subjected for the development of GM plants. In particular, there was only one article for each major staple grains such as wheat, barley, soybean, and maize. In more than 47% of total published articles, scientists mainly focused on the basic research such as developing transformation system (46 articles), gene expression study in transgenic plants (34), and vector constructions (10). In addition, 28 articles which main authors are Korean scientists were searched from 11 different international SCI journals. Again, major plants for GM research were tobacco (10) and rice (7). More than 50% of published articles were focused on the basic research, gene expression study with transgenic plants (16). The publications on the research of disease-resistant plants were 7 articles, 3 for the development of stress-resistant and 2 for the herbicide-resistant plants, respectively. It is believed that the last 10 year's investment through government organizations has just strengthen the capacity for the next big stride on agricultural biotechnology in Korea.

Microarray Analysis of Gene Expression by Rhei Rhizoma Water Extracts in a Hypoxia Model of Cultured Neurons (배양신경세포의 저산소증모델에서 대황 물추출물에 의한 유전자 표현 변화의 microarray 분석)

  • Lee, Hyun-Sook;Song, Jin-Young;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.21-33
    • /
    • 2009
  • In this study, we investigated the effect of Rhei Rhizoma (RR; 大黃) water extract on gene expression in a hypoxia model of cultured rat hippocampal neurons. RR water extract $(2.5{\mu}g/ml)$ was added to the culture media on day 10 in vitro (DIV10), and a hypoxic shock (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 h) was given on DIV13. After maintaining the cultures in normoxia for 24 hr, total RNA was isolated and used for microarray analysis. The MA-plot indicated that most genes were up- or downregulated within 2-fold. There were more downregulated genes (725 ea) than upregulated ones (472 ea) when larger than Global M value 0.2 (i.e., >15% increase) or smaller than Global M value -0.2 (i.e., >15% decrease) were considered. Antiapoptosis genes such as Tegt (2.4-fold), Nfkb1 (2.4-fold) Veg (1.8-fold), Ngfr (1.6-fold) were upregulated, while pro-apoptosis genes such as Bad (-64%), Cstb (-66%) were downregulated. Genes for combating environmental stress (stress response genes) such as Defb3 (2.7-fold), Cygb (2.2-fold), Ahsg (2.18-fold), Alox5 (2-fold) were upregulated. Genes for cell proliferation (cell cycle-related genes) such as Erbb2 (1.84-fold), Mapk12 gene (1.8-fold) was upregulated. Therefore, RR water extracts upregulate many pro-survival genes while downregulating many pro-death genes. It is interpreted that these genes, in combination with other regulated genes, can promote neuronal survival in a stress such as hypoxia.

Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes

  • Lumbera, Wenchie Marie L.;Cruz, Joseph dela;Yang, Seung-Hak;Hwang, Seong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.419-427
    • /
    • 2016
  • There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at $42^{\circ}C$ for one hour and then allowed to recover at normal incubation temperature of $37^{\circ}C$ for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to $400{\mu}g/mL$) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat shock amelioration among 3T3-L1 preadipocytes through heat shock factor and proteins augmentation and enhanced adipogenic marker expression.

Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection

  • Wang, Yiming;Kwon, Soon Jae;Wu, Jingni;Choi, Jaeyoung;Lee, Yong-Hwan;Agrawal, Ganesh Kumar;Tamogami, Shigeru;Rakwal, Randeep;Park, Sang-Ryeol;Kim, Beom-Gi;Jung, Ki-Hong;Kang, Kyu Young;Kim, Sang Gon;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.343-354
    • /
    • 2014
  • Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

Expression of Bombyx mori Transferrin Gene in Response to Oxidative Stress or Microbes (미생물 및 산화적 스트레스에 의한 누에 트랜스페린 발현)

  • Yun, Eun-Young;Kwon, O-Yu;Hwang, Jae-Sam;Ahn, Mi-Young;Goo, Tae-Won
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1607-1611
    • /
    • 2011
  • To analyze the role of Bombyx mori transferrin (BmTf) in response to microbes or oxidative stress, we investigated the level of BmTf transcripts in B. mori treated with various microbes and oxidative stress inducers. BmTf mRNA was mainly expressed in the epidermis and fat in the bodies of B. mori injected with Escherichia coli, and up regulated in response to microbes such as bacteria, fungi, or viruses, but was hardly altered in response to oxidative stress inducers such as $H_2O_2$, Cu, or $FeCl_3$. We also confirmed that BmTf mRNA expression was increased in Bm5 cells treated with ERK, PLC, PKA, PI3K, MAPK, or JNK inhibitors, respectively. To identify the major inducer of BmTf expression, we analyzed the amount of serum iron in the hemolymph of B. mori after injection or feeding with E. coli or $FeCl_3$. The results showed that the amount of serum iron was not changed by injection and feeding with E. coli, although BmTf mRNA was increased by injection with E. coli. On the contrary, injection and feeding with $FeCl_3$ significantly increased the amount of serum iron, although they did not alter the BmTf mRNA level. On the basis of these results, we assume that up-regulation of BmTf in B. mori is closely related to the defense of microorganism, and BmTf may be expressed at the basal constitutive level when it plays a role in iron metabolism by maintaining iron homeostasis and in the insect defense mechanism against oxidative stress.