• 제목/요약/키워드: Stress-hardening behavior

Search Result 268, Processing Time 0.021 seconds

Strain Hardening Behaviour of PM Alloys with Heterogeneous Microstructure

  • Straffelini, Giovanni
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.928-929
    • /
    • 2006
  • Tensile stress-strain and dynamic acoustic resonance tests were performed on Fe-C-Ni-Cu-Mo high-strength steels, characterized by a heterogeneous matrix microstructure and the prevalence of open porosity. All materials display the first yielding phenomenon and, successively, a continuous yielding behavior. This flow behavior can be described by the Ludwigson equation and developes through three stages: the onset of localized plastic deformation at the pore edges; the evolution of plastic deformation at the pore necks (where the austenitic Ni-rich phase is predominant); the spreading of plastic deformation in the interior of the matrix. The analytical modeling of the strain hardening behavior made it possible to obtain the boundaries between the different deformation stages.

  • PDF

Characteristics of River Sand Soil Parameter for Single Work-Hardening Constitutive Model to Stress Path (강모래의 응력경로에 따른 단일항복면 구성모델의 토질매개변수 특성)

  • Lee, Jong-Cheon;Cho, Won-Beom
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.395-400
    • /
    • 2012
  • The stress-strain relationship of soil is dependent on a number of factors such as soil type, density, stress level and stress path. Th accurate stress-stain relationship can be predict using a constitutive model incorporated all influencing factors. In this study, an isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress paths were performed on Baekma river sand to investigate parameters characteristics of Lade's single work hardening model depending on the stress path.. Based on test results, the parameters of yield function (h, ${\alpha}$) are not much influenced by stress level and stress path, the these parameters do affect a little bit of stress-strain behavior. The parameters h and ${\alpha}$ are closely related to failure criterion ${\eta}_1$, they can be replaced by failure criterion parament. We also observed that predicted values from the Lade's single hardening constitutive model are well matched with the observed data.

Constitutive Modeling of Magnesium Alloy Sheets (마그네슘 합금 판재의 비선형 항복.경화거동 모델링)

  • Lee, M.G.;Wagoner, R.H.;Lee, J.K.;Chung, K.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.298-301
    • /
    • 2007
  • Magnesium alloy sheets have unique mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening response. The unusual mechanical behavior of magnesium alloys has been understood by the limited symmetry crystal structure of HCP metals or by deformation twinning. In the present study, the continuum plasticity models considering the unusual plastic behavior of magnesium alloy sheet were derived for a finite element analysis. A new hardening law based on two-surface model was developed to consider the general stress-strain response of metal sheets such as Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. In terms of the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified to include the anisotropy of magnesium alloys.

  • PDF

A Physically Based Dynamic Recrystallization Model for Predicting High Temperature Flow Stress (열간 유동응력 예측을 위한 물리식 기반 동적 재결정 모델)

  • Lee, H.W.;Kang, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.450-455
    • /
    • 2013
  • In the current study, a new dynamic recrystallization model for predicting high temperature flow stress is developed based on a physical model and the mean field theory. In the model, the grain aggregate is assumed as a representative volume element to describe dynamic recrystallization. The flow stress and microstructure during dynamic recrystallization were calculated using three sub-models for work hardening, for nucleation and for growth. In the case of work hardening, a single parameter dislocation density model was used to calculate change of dislocation density and stress in the grains. For modeling nucleation, the nucleation criterion developed was based on the grain boundary bulge mechanism and a constant nucleation rate was assumed. Conventional rate theory was used for describing growth. The flow stress behavior of pure copper was investigated using the model and compared with experimental findings. Simulated results by cellular automata were used for validating the model.

Constitutive Model for Hardening Materials such as Rock or Concrete (암석이나 콘크리트와 같은 경화재료에 대한 구성모델)

  • Kang, Byung Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.161-171
    • /
    • 1993
  • The aim of this study is to provide the stress-strain behavior of hardening geological materials such as rock or concrete on three dimensional spaces by using Desai model based on plastic theory. To validate proposed model, truly triaxial tests with high pressure under variety of stress paths in which three principal stresses were controlled independently using concrete materials were performed. The main results are summerized as follows: 1. Various stress paths for hardening materials used are satisfactorily explained by performing the truly triaxial test with high pressure. This is very important to investigate constitutive equations for materials like rock or concrete. 2. Since the proposed yield function is continuous, it avoids the singularity point at the intersection of two function in the previous models, thus, reducing the difficulties for computer implementation. 3. Analytic predictions for yielding behavior on $J_1-{\sqrt{J_{2D}}}$ octahedral and triaxial plane, as well as volumetric strain and stress-strain behavior agree well with experimental results.

  • PDF

Undrained Analysis of Soft Clays Using an Anisotropic Hardening Constitutive Model: II. Numerical Analysis (비등방경화 구성모델을 적용한 연약 지반의 비배수 거동 해석 : II. 수치해석)

  • 오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.131-142
    • /
    • 1999
  • The objective of this study is to perform finite element analyses using the anisotropic hardening constitutive model on the basis of the total stress concept. An anisotropic hardening constitutive model had been developed in a companion paper, and was then formulated by implicit stress integration and consistent tangent moduli. A nonlinear finite element analysis program was coded including the algorithm, and as a result, the nonlinear solution was accurately calculated and converged to be asymptotically quadratic. In the analysis of a test embankment it was found that the proposed model could predict the displacement of soils more reasonably than the analysis with von Mises type model. In addition the proposed model could predict accurately the actual behavior through the reanalysis of the problem by a reasonable evaluation of the strength parameter.

  • PDF

A Study on Fatigue Strength Characteristics of Weld Joint using Metal Type Flux Cored Wire (금속계 플럭스들이 용접이음부의 피로강도 특성에 관한 연구)

  • 강성원;신동진;김환식
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.151-161
    • /
    • 1994
  • FCAW has wide application in ship fabrication, maintenance and field erection. It has many advantages over SMAW.SAW and GMAW process. In many applications, the FCAW provides highquality weld metal. This method can reduce weld defects especially porosity and spatter. But the fatigue characteristics of those deposited metal have been rarely investigated. The purpose of this study is to investigate the cyclic stress-strain behavior and fatigue tests by the constant strain control were carried out on the rounded smooth specimen with deposited metal using the metal type flux cored wire. As the results of this study for the deposited metal welded by the metal type flux cored wire, the hardening or softening characteristics under cyclic load were investigated and cyclic stress-strain curve, strain-fatigue life curve, stress-strain function and fatigue life relation which are useful to estimate the fatigue life under the stress concentration condition were obtained.

  • PDF

Study on Torsional Strength of Induction-Hardened Axle Shaft (고주파 열처리를 고려한 액슬 축 비틀림 거동 연구)

  • Kang, Dae-Hyun;Lee, Bum-Jae;Yun, Chang-Bae;Kim, Kang-Wuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.645-649
    • /
    • 2010
  • Induction hardening has been used to improve the torsional strength and characteristics of wear for axle shaft that is used to transmit driving torque from the differential to the wheel in automobiles. After the rapid heating and cooling processes of induction hardening are carried out, the shaft has residual stress and material properties change; this affects the allowable transmitted torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction-hardened axle shafts with residual stress. In this study, the finite element method is used to study the thermomechanical behavior of the material, and the results are compared with experimental results. The results indicate that the torsional strength of the axle shaft depends on the surface hardening depth and distribution of residual stress.

An Anisotropic Hardening Elasto-Plastic Constitutive Model for the Behavior at Small-to-Large Strain Conditions (미소변형률 및 대변형률 조건의 거동에 대한 비등방경화 탄소성 구성모델)

  • 오세붕;권기철;정순용;김동수
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.65-73
    • /
    • 2000
  • An elasto-plastic constitutive model was proposed, in which the behavior at small-to-large strain level can be modeled. The proposed model is based on the anisotropic hardening description with the generalization of isotropic hardening rule and the total stress concept. From a mathematical approach it was proved that the model includes the previous successful models. The model was verified by a series of resonant column tests, torsional shear tests and triaxial tests, and the proposed model predicted small-to-large strain behavior more consistently and accurately than the hyperbolic model and the Ramberg-Osgood model for a weathered granitic soil. In addition, the nonlinearity under small strain condition was predicted appropriately for the torsional shear test results.

  • PDF

Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel (Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동)

  • Oh, Yong Jun;Park, Joong-Cheul;Yang, Won Jon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.