• Title/Summary/Keyword: Stress-Strain curve

Search Result 634, Processing Time 0.024 seconds

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.

Effect of Temperature and Aging on the Relationship Between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정 탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근;박우선;김동현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.610-618
    • /
    • 2001
  • This paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model of the relationships we proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperatures of 10, 23, and 50$\^{C}$ Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus according to cement type, temperature and aging. The proposcd relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type md temperature.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Yoo, Min-Taek;Yang, Eui-Kyu;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models consisting of a single-pile and a $4{\times}2$-pile group were tested twice; first using Jumoonjin sand, and second using Australian Fine sand, which has a smaller particle size. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

  • PDF

Loading tests and strength evaluation of bogie frame for intermodal tram (인터모달 트램 대차프레임의 하중 시험 및 강도 평가)

  • Seo, Sung-il;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun;Kim, Jeong-guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.554-561
    • /
    • 2016
  • In this study, loading tests and a strength evaluation of the bogie frame were conducted to verify the structural safety of the bogie system in an intermodal tram, which runs with cars on a road track. The loads were calculated taking into account the features of the road track with many sharp curves and steep gradients, which are different from the track of conventional railway. They were compared with the loads specified in the previous standard specifications. After the comparison, it was confirmed that the loads acting on the bogie system operating on a road track are slightly different from the specified loads. The specified vertical load of the standard specification for all kinds of trains is conservative, but the specified lateral and longitudinal loads are less than the calculated loads. The application of the actual loads was proven to be reasonable in the development of a new railway system. Based on the defined loads, the bogie frame was fabricated on which strain gauges were attached. It was set on the large loading frame so that the stresses could be measured when loads were applied by hydraulic actuators. After measuring the stresses, it was shown that they were below the allowable stress, which verified the structural safety of the bogie frame.

Molecular Theory of Plastic Deformation (Ⅲ)$^*$

  • Kim, Jae-Hyun;Ree, Tai-Kyue;Kim, Chang-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.3
    • /
    • pp.96-104
    • /
    • 1981
  • (1) The flow data of f (stress) and ${\dot{s}$ (strain rate) for Fe and Ti alloys were plotted in the form of f vs. -ln ${\dot{s}$ by using the literature values. (2) The plot showed two distinct patterns A and B; Pattern A is a straight line with a negative slope, and Pattern B is a curve of concave upward. (3) According to Kim and Ree's generalized theory of plastic deformation, pattern A & B belong to Case 1 and 2, respectively; in Case 1, only one kind of flow units acts in the deformation, and in Case 2, two kinds flow units act, and stress is expressed by $f={X_1f_1}+{X_2f_2}$where $f_1\;and\;f_2$ are the stresses acting on the flow units of kind 1 and 2, respectively, and $X_1,\;X_2$ are the fractions of the surface area occupied by the two kinds of flow units; $f_j=(1/{\alpha}_j) sinh^{-1}\;{\beta}_j{{\dot{s}}\;(j=1\;or\;2)$, where $1/{\alpha}_j\;and\;{\beta}_j$ are proportional to the shear modulus and relaxation time, respectively. (4) We found that grain-boundary flow units only act in the deformation of Fe and Ti alloys whereas dislocation flow units do not show any appreciable contribution. (5) The deformations of Fe and Ti alloys belong generally to pattern A (Case 1) and B (Case 2), respectively. (6) By applying the equations, f=$(1/{\alpha}_{g1}) sinh^-1({\beta}_{g1}{\dot{s}}$) and $f=(X_{g1}/{\alpha}_{g1})sinh^{-1}({\beta}_{g1}{\dot{s}})+ (X_{g2}/{\alpha}_{g2})\;shih^{-1}({\beta}_{g2}{\dot{s}})$ to the flow data of Fe and Ti alloys, the parametric values of $x_{gj}/{\alpha}_{gj}\;and\;{\beta}_{gs}(j=1\;or\;2)$ were determined, here the subscript g signifies a grain-boundary flow unit. (7) From the values of ($({\beta}_gj)^{-1}$) at different temperatures, the activation enthalpy ${\Delta}H_{gj}^{\neq}$ of deformation due to flow unit gj was determined, ($({\beta}_gj)^{-1}$) being proportional to , the jumping frequency (the rate constant) of flow unit gj. The ${\Delta}H_{gj}\;^{\neq}$ agreed very well with ${\Delta}H_{gj}\;^{\neq}$ (self-diff) of the element j whose diffusion in the sample is a critical step for the deformation as proposed by Kim-Ree's theory (Refer to Tables 3 and 4). (8) The fact, ${\Delta}H_{gj}\;^{\neq}={\Delta}H_{j}\;^{\neq}$ (self-diff), justifies the Kim-Ree theory and their method for determining activation enthalpies for deformation. (9) A linear relation between ${\beta}^{-1}$ and carbon content [C] in hot-rolled steel was observed, i.e., In ${\beta}^{-1}$ = -50.2 [C] - 40.3. This equation explains very well the experimental facts observed with regard to the deformation of hot-rolled steel..

Strengthening Effect of Axial Square Concrete Members Wrapped by CFRP sheet (CFRP 쉬트로 보강된 사각형 콘크리트 압축부재의 보강 효과)

  • Moon, Kyoung-Tae;Park, Sang-Yeol;Koh, Kwang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2017
  • This study deals with the strengthening effect and behavioral characteristics of square concrete column wrapped with carbon FRP sheet. The increase in axial compression capacity comes from the confinement effect of wrapped CFRP sheet. Because of the shape of square concrete column, the confinement effect is smaller than that in circular column. For the experimental program, four parameters including the number of sheet, the size of column specimen, the aspect ratio, the corner rounding, and the transformation in shape from square to circular were selected to examine the strengthening effect and behavioral characteristics for each parameter. Experimental program comprised fifty five square concrete column specimens for different eleven types. The compression test results confirmed that the strengthening effect can be increased by the confinement of wrapped and bonded CFRP sheet. However, the confining effect was decreased with the increase of square column size. The other hand, the ductility in square concrete column greatly increased due to caging effect of CFRP sheet. The transformation in shape from square to circular considerably increased both the compressive strength and the ductility of the concrete column wrapped with CFRP sheet. In addition, using test results and existing studies, accuracy and reliability of the existing strength models for CFRP-confined square concrete are verified.

Interfacial Evaluation and Microfailure Sensing of Nanocomposites by Electrical Resistance Measurements and Wettability (전기저항측정법 및 젖음성을 이용한 나노복합재료의 미세파손 감지능 및 계면물성 평가)

  • Park, Joung-Man;Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.138-144
    • /
    • 2017
  • Damage sensing of polymer composite films consisting of poly(dicyclopentadiene) p-DCPD and carbon nanotube (CNT) was studied experimentally. Only up to 1st ring-opening polymerization occurred with the addition of CNT, which made the modified film electrically conductive, while interfering with polymerization. The interfacial adhesion of composite films with varying CNT concentration was evaluated by measuring the wettability using the static contact angle method. 0.5 wt% CNT/p-DCPD was determined to be the optimal condition via electrical dispersion method and tensile test. Dynamic fatigue test was conducted to evaluate the durability of the films by measuring the change in electrical resistance. For the initial three cycles, the change in electrical resistance pattern was similar to the tensile stress-strain curve. The CNT/p-DCPD film was attached to an epoxy matrix to demonstrate its utilization as a sensor for fracture behavior. At the onset of epoxy fracture, electrical resistance showed a drastic increase, which indicated adhesive fracture between sensor and matrix. It leads to prediction of crack and fracture of matrix.

Inelastic Nonlinear Analysis of Arch Truss and Space Truss Structures (아치 트러스 및 공간 트러스 구조의 비탄성 비선형 거동해석)

  • Kim, Kwang-Joong;Jung, Mi-Roo;Kim, Yeon-Tae;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.47-58
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structural system. With this character of the spatial structure, generally long span is used. As a result, large deflection is accompanied from the general frame. the structure is apt to result in a large deflection even though this structure experiences a small displacement in absence. Usually, nonlinear analysis in numerical analysis means geometric nonlinearity and material nonlinearity and complex nonlinearity analysis considers both of them. In this study, nonlinear equation of equilibrium considering geometric nonlinearity as per finite element method was applied and also considered the material nonlinearity using the relation of stress-strain in element. It is applied to find unstable result for tracing load-deflection curve in the numerical analysis tech. especially Arc-length method, and result of the analysis was studied by ABAQUS a general purpose of the finite element program. It is found that the present analysis predicts accurate nonlinear behavior of plane and space truss.

  • PDF

An Analytical Study on Encased Steel Composite Columns Fire Resistance According to Axial Force Ratio (화재시 축력비에 따른 매입형 합성기둥의 내화성능에 대한 해석적 연구)

  • Kim, Ye-Som;Choi, Byong-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.97-107
    • /
    • 2020
  • In this study, finite element analysis was carried out through the finite element analysis program (ANSYS) to investigate the fire resistance of composite columns in fire. Transient heat transfer analysis and static structural analysis were performed according to ASTM E 119 heating curve and axial force ratio 0.7, 0.6, 0.5 by applying stress-strain curves according to temperature, and loading heating experiments were carried out under the same conditions. In addition, the nominal compressive strength of the composite column according to the heating time according to the standard(Eurocode 4) was calculated and expressed as the axial force ratio and compared with the analytical and experimental values. Through the analysis, As a result of finite element analysis, the fire resistance time was 180 minutes and similar value to the experimental value was obtained, whereas the fire resistance time 150 minutes and 60 minutes were derived from the axial force ratios 0.6 and 0.7. In addition, it was confirmed that the fire resistance time according to the axial force ratio calculated according to the reference equation (Eurocode 4) was lower than the actual experimental value. However, it was confirmed that the standard(Eurocode 4) was higher than the experimental value at the axial force ratio of 0.7. Accordingly, it is possible to confirm the fire resistance characteristics(time-axial force ratio relationship) of the SRC column at high axial force, and to use the experimental and anaylsis data of the SRC column as the data for verification based on Eurocode.