DOI QR코드

DOI QR Code

An Analytical Study on Encased Steel Composite Columns Fire Resistance According to Axial Force Ratio

화재시 축력비에 따른 매입형 합성기둥의 내화성능에 대한 해석적 연구

  • 김예솜 (경기대학교 일반대학원 건축공학과) ;
  • 최병정 (경기대학교 건축공학과)
  • Received : 2019.12.21
  • Accepted : 2020.01.08
  • Published : 2020.02.29

Abstract

In this study, finite element analysis was carried out through the finite element analysis program (ANSYS) to investigate the fire resistance of composite columns in fire. Transient heat transfer analysis and static structural analysis were performed according to ASTM E 119 heating curve and axial force ratio 0.7, 0.6, 0.5 by applying stress-strain curves according to temperature, and loading heating experiments were carried out under the same conditions. In addition, the nominal compressive strength of the composite column according to the heating time according to the standard(Eurocode 4) was calculated and expressed as the axial force ratio and compared with the analytical and experimental values. Through the analysis, As a result of finite element analysis, the fire resistance time was 180 minutes and similar value to the experimental value was obtained, whereas the fire resistance time 150 minutes and 60 minutes were derived from the axial force ratios 0.6 and 0.7. In addition, it was confirmed that the fire resistance time according to the axial force ratio calculated according to the reference equation (Eurocode 4) was lower than the actual experimental value. However, it was confirmed that the standard(Eurocode 4) was higher than the experimental value at the axial force ratio of 0.7. Accordingly, it is possible to confirm the fire resistance characteristics(time-axial force ratio relationship) of the SRC column at high axial force, and to use the experimental and anaylsis data of the SRC column as the data for verification based on Eurocode.

본 연구에서는 화재시 매입형 합성기둥의 높은 축력비에 따른 내화성능을 알아보기 위해 유한요소해석 프로그램(ANSYS)을 통한 해석을 실시하였다. 온도에 따른 응력-변형률 곡선을 적용하여 ASTM E 119 가열곡선과 축력비 0.7, 0.6, 0.5에 따른 과도상태 열전달해석 및 정적구조해석을 실시하였으며, 해석조건과 동일한 조건에서의 재하가열실험을 실시하였다. 또한, 기준식(Eurocode 4)에 따라 가열시간에 따른 합성기둥의 공칭압축강도를 산정하고, 축력비로 나타내어 해석값 및 실험값과 비교하였다. 해석 및 실험과 기준(Eurocode 4)을 통해 가열시간에 따른 단면별 온도분포를 확인하고, 이에 따른 내화성능을 측정해 비교분석하였다. 유한요소해석 결과 축력비 0.5에서는 내화시간 180분으로 실험값과 유사한 값이 도출된 반면, 축력비 0.6, 0.7에서 내화시간 150분과 60분이 도출되어 실험결과에 비해 다소 높은 결과가 도출된 것을 알 수 있었다. 그리고 기준식(Eurocode 4)에 따라 산정한 축력비에 따른 내화시간이 실제 실험값에 비해 다소 낮게 평가하고 있다는 것을 확인하였다. 그러나 축력비 0.7에서는 기준(Eurocode 4)이 실험값에 비해 다소 높게 평가하는 것을 확인하였다. 이에 따라 고축력에서의 매입형 합성기둥의 내화특성(시간-축력비 관계)을 확인하고, 도출된 매입형 합성기둥의 실험 및 해석데이터를 Eurocode기준의 검증의 자료로 활용할 수 있을 것으로 보인다.

Keywords

References

  1. Hwang, K. J., Cho, B.Y., Yeo, I. H. (2013), A Study on the Fire Resistance Performance of Reinforced Concrete Columns according to Axial Load Ratio, Fire Science and Engineering, Vol 27, No 6, pp.26-31. https://doi.org/10.7731/KIFSE.2013.27.6.026
  2. Yeo, S. H., Won, Y. A., Choi, S. M. (2012), A Study on the Evaluation of Residual Strength of Double Concrete Filled Tube Column by Unstressed test", Journal of Korean Society of Steel Construction, Vol 24, No 1, pp.81-89. https://doi.org/10.7781/kjoss.2012.24.1.081
  3. Kwak, S. S., Choi B. J. (2019), An Analytical Study on Composite Beam Performance with Post-Fire Temperature Using ANSYS Program", Journal of the Korea Academia-Industrial cooperation Society, Vol 20, No 1, pp.391-400. https://doi.org/10.5762/KAIS.2019.20.1.391
  4. Hwang, J. Y., Kwak, .H. G. (2015), A Numerical Model of Reinforced Concrete Members Exposed to Fire and After-Cooling Analysis, Journal of the Computational Structural Engineering Institute of Korea, Vol 28, No 1, pp. 101-113. https://doi.org/10.7734/COSEIK.2015.28.1.101
  5. Hwang, J. W., Ha, S. H., Lee, Y. H., Kim, W. J., Kwak, H. G. (2015), A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members, Korea Concrete Institute, Vol 25, No 5, pp. 497-508.
  6. Kim, H. J., Hwang, H. J., Hong Gun Park, Dong Kwan Kim, Jong Min Yang(2017), Eccentric Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles, Korean Society of Steel Construction, Volume 29, Issue 3, pp.249-260.
  7. Mao, X. , Kodur, V. K. R. (2001), Fire resistance of concrete encased steel columns under 3-and 4-side standard heating, Journal of constructional steel Research, Journal of constructional steel Research, Vol 67, No 3, pp. 270-280.
  8. Huang, Z. F., Tan, K. H., Phng, G. H. (2007), Axial restraint effects on the fire resistance of composite columns encasing I-section steel, Journal of Constructional Steel Research, Vol 63, No 4, pp.437-447. https://doi.org/10.1016/j.jcsr.2006.07.001
  9. Huang, Z.F., Tan, K. H., Toh, W. S., Phng, G. H. (2008), Fire resistance of composite columns with embedded I-section steel Effect of section size and load level, Journal of Constructional Steel Research, Vol 64, No 3, pp.312-325. https://doi.org/10.1016/j.jcsr.2007.07.002
  10. Ellobody, E., Young, B. (2010), Investigation of concrete encased steel composite columns at elevated temperatures, Thin-Walled Structures, Vol 48, No 8, pp.597-608. https://doi.org/10.1016/j.tws.2010.03.004
  11. Ellobody, E., Young, B. (2011), Performance of axially restrained concrete encased steel composite columns at elevated temperatures, Engineering Structures, Vol 33, No 1, pp.245-254. https://doi.org/10.1016/j.engstruct.2010.10.019
  12. Kim, Y. S., Choi, B. J. (2019), Experimental Study on the Fire Resistance of Steel-Reinforced Concrete Column in Fire According to Load Ratio, Journal of Korean Society of Steel Construction, Vol.31, No.6, pp.463-475.
  13. Architectural Institute of Korea Korean Building Code-Structural (KBC 2016), AIK, Korea (in Korean), pp.340-345, 2016.
  14. Korean Agency for Technology and Standards (2014) Methods of Fire Resistance Test for Elements of Building Construction - General Requirements (KS F 2257-1: 2014), Korea.
  15. Ellobody, E. (2007), Nonlinear behavior of concrete-filled stainless steel stiffened slender tube columns, Thin-Walled Structures, Vol 45, Issue 3, pp.259-273. https://doi.org/10.1016/j.tws.2007.02.011
  16. European Committee for Standardization Eurocode 2(2004): Design of Concrete Structures: General Rules and Rules for Buildings and Structural Fire Design - Part 1-2:Structural fire design, CEN(European Committee for Standardization), pp. 19-21, pp.26-29.
  17. European Committee for Standardization Eurocode 3(2005): Design of steel structures - Part 1-2: General rules - Structural fire design, CEN(European Committee for Standardization), pp. 20-27.
  18. Kim, H. Y., Lee, S. H., Seo, C. h. (2002), An Experimental Study on the Mechanical Behaviro of Normal Strength Concrete at High Temperature, Architectural Institute of Korea, Vol 18, No 11, pp.77-84.
  19. European Committee for Standardization Eurocode 4(2005): Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design, CEN(European Committee for Standardization), pp.19-28.
  20. Kim, H. Y., Seo, C. H. (2004), An Experimental Study on the Physical Properties by Compressive Strength Areas of Concrete at High Temperature, Architectural Institute of Korea, Vol 20, No 11, pp.75-82.