• Title/Summary/Keyword: Stress- ratio

Search Result 4,038, Processing Time 0.026 seconds

Centrifugal Model Test on Stress Concentration Behaviors of Composition Ground under Flexible/Stiff Surcharge Loadings (연/강성 하중을 받는 복합지반의 응력분담거동에 대한 원심모형시험)

  • Song, MyungGeun;Bae, WooSeok;Ahn, SangRo;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.5-15
    • /
    • 2011
  • In this study, centrifuge model tests were performed to investigate stress concentration ratio, stress characteristics of soft clay ground improved by granular compaction piles with changes of piles type, loading condition and area replacement ratio. From the results of rigid loading tests, while vertical stresses acting on clay ground is similar, vertical stresses acting on GCP is larger than those acting on SCP with same replacement ratio. Also, average stress concentration ratio is increased proportionally with increasing the area replacement ratio of GCP and SCP. It was evaluated that average stress concentration ratio of soft clay ground improved by GCP is larger than that of SCP. As a result of flexible loading tests, stress concentration ratio is the highest when replacement ratio of GCP and SCP is 40%. Average stress concentration ratio of soft clay ground improved by GCP is a little more higher than is improved by SCP.

Effects of silt contents on the static and dynamic properties of sand-silt mixtures

  • Hsiao, Darn H.;Phan, Vu T.A.
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.297-316
    • /
    • 2014
  • This paper presents a detailed study focused on investigating the effects of silt content on the static and dynamic properties of sand-silt mixtures. Specimens with a low-plastic silt content of 0, 15, 30 and 50% by weight were tested in static triaxial, cyclic triaxial, and resonant columns in addition to consolidation tests to determine such parameters as compression index, internal friction angle, cohesion, cyclic stress ratio, maximum shear modulus, normalized shear modulus and damping ratio. The test procedures were performed on specimens of three cases: constant void ratio index, e = 0.582; same peak deviator stress of 290 kPa; and constant relative density, $D_r$ = 30%. The test results obtained for both the constant-void-ratio-index and constant-relative-density specimens showed that as silt content increased, the internal friction angle, cyclic stress ratio and maximum shear modulus decreased, but cohesion increased. In testing of the same deviator stress specimens, both cohesion and internal friction angle were insignificantly altered with the increase in silt content. In addition, as silt content increased, the maximum shear modulus increased. The cyclic stress ratio first decreased as silt content increased to reach the threshold silt content and increased thereafter with further increases in silt content. Furthermore, the damping ratio was investigated based on different silt contents in three types of specimens.

A Study on the Shape Optimization of a Cutout Using Evolutionary Structural Optimization Method (진화 구조 최적화 기법을 이용한 개구부의 형상 최적화에 관한 연구)

  • 류충현;이영신
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.369-372
    • /
    • 2000
  • ESO(Evolutionary Structural Optimization) method is known that elements involved low stress value are removed from the previous model or that elements are added around elements involved high stress level on it and then the optimized model is obtained with required weight. Rejection ratio/addition ratio and evolutionary ratio are predefined and elements having lower/higher stress than reference stress, which average Mises stress on edge elements times rejection ratio, are deleted/added. In this study, when the plate having a cutout is subjected various in-plane load, a cutout shape is optimized using ESO method. ANSYS is used to analyse a finite element model and optimization procedure is made by APDL (ANSYS Parametric Design Language). ESO method is useful in rather than a complex structure optimization as well as a cutout shape optimization.

  • PDF

Effect of Specimen Size on Fatigue crack Growth Rate in Steels (강재의 피로균열전파율에 미치는 시험편 크기의 영향)

  • 안석화
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • This paper describes the effect of specimen size on fatigue crack growth rate for the offshore structural high-tensile-strength steel BS4360 and machine structural steel SM45C. The purpose of the present study is to investigate the effect of stress ratio aspect ratio specimen width and specimen thickness of the fatigue crack growth behavior. Compact tension specimens with a LT orientation for BS4360 and SM45C steels were used, All testing was done at constant stress intensity factor range controlled fatigue crack growth condition. The investigation demonstrates that the fatigue crack growth rate is increased with increasing stress ratio and specimen thickness and is decreased with increasing specimen width. The fatigue crack growth rate is unaffected by aspect ratio until a/W=0.50 but is increased by increasing spect ratio from a/W=0.55.

  • PDF

Confinement model for RC columns strengthened with direct-fastened steel plates

  • Shan, Z.W.;Looi, D.T.W.;Su, R.K.L.
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.367-381
    • /
    • 2021
  • Reinforced concrete (RC) columns can be strengthened by direct fastening of steel plates around a column, forming composite actions. This method can increase both the total load bearing area and the concrete confinement stress. To predict the axial load resistance of strengthened RC columns, the equivalent passive confinement stress of the stirrups and the steel jacket should be accurately quantified, which requires the stress in the stirrups and shear force in the connections to be first obtained. In this paper, parameters, i.e., the stress ratio of the stirrups and shear force ratio of steel plate connectors are utilized to quantify the stress of the stirrups and shear force in the connections. A mechanical model for determining the stress ratio of the stirrups and shear force ratio of steel plate connectors is proposed and validated using the experimental results in a previous study. The model is found to be robust. Subsequently, a parametric study is conducted and the optimum stress ratios of the stirrups and the optimum shear force ratios of connectors are proposed for engineering designs.

FINITE ELEMENT ANALYSIS ON MAXILLARY MOLAR IMPLANT UNDER DIFFERENT C/R RATIO (상악 구치부 임플랜트 보철수복시 치관/치근비에 따른 응력 분포에 대한 유한 요소 분석)

  • Kim, Jin-Ho;Kim, Hyung-Seob;Choi, Dae-Gyun;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.561-573
    • /
    • 2006
  • Statement of the problem: In cases of low bone level in maxilla followed by extraction due to severe periodontitis or enlarged maxillary sinus, crown-root ratio of implant prosthesis will increase. The prognosis of these cases is not good as expected. Purpose : The purpose is to compare stress distribution due to crown-root ratio and effect of splinting between two implants in maxillary molar area under different loads Material and methods: Using ITI($4.1{\times}10$ mm) implant. two finite element models were made(model S: two parallel implants, model A: one of two is 20 degree inclined). Each model was designed in different crown-root ratio(0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it splinted or non-splinted clinical situations. After that, 300 N force was loaded to each model in four ways.(load 1 : middle of occlusal table, load 2 : middle of buccal cusp, load 3 : middle of lingual cusp, load 4 : horizontal load to middle of buccal cusp), and stress distribution was analyzed. Results: On all occasions, stress was concentrated on neck of implant near cortical bone. In the case of inclined implant, stress was increased compared with parallel implants. Under load 1, 2, 3, stress was not increased even when crown-root ratio increases, but under load 4, when crown-root ratio increases, stress also increased. And more stress was concentrated under load 1 than load 2, 3. When crown-root ratio was same, stress under load 1, 2, 3 decreased when splinting, but under load 4, stress did not really decrease. Conclusion: Under vertical load, stress distribution related to crown-root ratio did not change. But under horizontal load, stress increased as crown-root ratio increases. Under vertical load, splinting decreased stress but under horizontal load, effect of splinting was decreased as condition of implant changes for the worse such as increase of crown-root ratio, inclined implant.

A Numerical Study on the Variation of Initial Stress Ratio by Erosion of Transversely Isotropic Rock Mass (횡등방성 암반의 침식에 따른 초기응력비 변화의 수치해석 연구)

  • 최미진;김원범;양형식
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.339-344
    • /
    • 2004
  • Variation of horizontal to vertical stress ratio of transversely isotropic rock caused by erosion was studied by numerical analysis. Influence of transversely isotropic was less than 5% for isotropic case. Difference between stresses obtained by numerical analysis and theoretical solution was small when initial stress ratio was small and the difference increased as erosion depth increased. Stress ratios diverged from initial ones as depth increased. An equation to determine stress ratio considering erosion according to the analyses was suggested.

A Constitutive Model for Normally Consolidated Clays (정규압밀점토의 응력 -변형률 구성 방정식)

  • 이영휘
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.71-80
    • /
    • 1992
  • A new constitutive model is proposed for normally consolidated clays. A main skeleton of the proposed model is based on the concepts of the incremental stress-strain theory by Roscoe and Poorooshasb. The equation of the undrained stress path is formulated by introducing the new pore pressure parameter(C), which is the slope of the linear line in the plot of the normalized pore pressure against the stress ratio. Once the stress increment along the constant stress ratio path (followed by untrained stress path) is know, the volumetric strains are calculated from the linear characteristics between void ratio and logarithm of the mean normal stress for any stress ratio. Then the incremental shear strains are successfully predicted by applying the flow rule derived in the modified theory by Roscoe and Burland.

  • PDF

Uniaxial Compression Behavior of High-Strength Concrete Confined by Low-Volumetric Ratio Lateral Ties

  • Hong Ki-Nam;Han Sang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.843-852
    • /
    • 2005
  • Presently, test results and stress-strain models for poorly confined high-strength columns, more specifically for columns with a tie volumetric ratio smaller than $2.0\%$, are scarce. This paper presents test results loaded in axial direction for square reinforced concrete columns confined by various volumetric ratio lateral ties including low-volumetric ratio. Test variables include concrete compressive strength, tie yield strength, tie arrangement type, and tie volumetric ratio. Local strains measured using strain gages bonded to an acryl rod. For square RC columns confined by lateral ties, the confinement effect was efficiently improved by changing tie arrangement type from Type-A to Type-B. A method to compute the stress in lateral ties at the concrete peak strength and a new stress-strain model for the confined concrete are proposed. Over a wide range of confinement parameters, the model shows good agreement with stress-strain relationships established experimentally.

The Effect of Stress Ratio on Fatigue Crack Propagation Rate and Arrest Behavior in 7075-T735 Al Alloy (7075-T735 Al 합금의 피로균열 진전속도와 정류거동에 미치는 응력비의 영향)

  • 오세욱;강상훈;허정원;김태형
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.131-139
    • /
    • 1992
  • The understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading is very important for life prediction of the air travel structures. Particularly, the retardation and arrest behavior of fatigue crack propagation by single tension overloading is essential to the understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading. Numerous studies of the retardation behavior have been performed, however investigations of the arrest behavior have not been enough yet. As for the arrest behavior, Willenborg had reported that the overload shut-off ratio $[R_{so}=(K_{OL})/K_{max})_{crack arrest}]$ had been the material constant, but recently several investigators have reported that the overload shut-off ratio depends upon the stress ratio. In this study, authors have investigated the effect of stress ratio on the threshold overload shut-off ratio to generate arrest of fatigue crack growth in high tensile aluminum alloy 7075-T735 which have used in material for air travel structures, It has been $-0.4\leqqR\leqq0.4$ till now, the region of stress ratio investigated. The threshold overload shut-off ratio has decreased as stress ratio has increased in overall region of -$-0.4\leqqR\leqq0.4$ and the linearity has been seen in this material. Moreover, the experimental equation between $R_{so}$ and R has been made; The relation has been $R_{so}=-R+2.6$.

  • PDF