• Title/Summary/Keyword: Stress wave test

Search Result 224, Processing Time 0.18 seconds

Stiffness Characteristics according to Salt Cementation (소금 고결화에 따른 강성 특성)

  • Eom, Yong-Hun;Truong, Q. Hung;Yoo, Joung-Dong;Byun, Yong-Hoon;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.255-264
    • /
    • 2009
  • Soils containing vanishing materials lead changes in the microstructure of particulate media due to water inflow. Thus, dissolution renders some local unstability. As the moisture contents decease, the component of the vanished materials may affects on the cementation of paniculate materials. This cementation phenomenon has a huge influence on the stiffness, strength and stability under lower stress level. The goal of this study is to introduce the cementation effects on a compressional wave velocity, a shear wave velocity, and the resonant frequency of shear waves. The glass bead and salt water with different mole contents are used. Test results show that the changes of shear and compressional wave velocities consist of three stages. In the first region, compressional wave velocities increase and shear wave velocities decrease with a decreases in reducing water contents from 100% to 90~95%. In the second region, shear and compressional wave velocities become stable at 90~95% to 10% of the water contents. In the third region, shear and compressional wave velocities increases dramatically with a decrease in the water content due to the capillary force and cementation of salt. Furthermore, the resonant frequency of the shear waves shows similar phenomenon. Specimens prepared by glass beads and salt water are proved to be able to provide a meaningful insight in under structural behaviors of the cementation.

  • PDF

Effect of Exercise and Physical Stresses on the Electrocardiogram (운동부하 및 각종 신체조건이 혈압 및 ECG에 미치는 영향 -제2보- (각종 Stress에 의한 심전도 변화))

  • Park, Won-Kyun;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.16 no.2
    • /
    • pp.129-136
    • /
    • 1982
  • We studied this experiment to compare the effects of exercise and other body conditions: i.e., Flack test, cold pressor test and bicycle ergometry on the electrocardiogram. We had sixty healthy college students who were thirty nine men and twenty one women. Their $mean{\pm}SD$ values of physical characteristics were as follows: age; $22.0{\pm}1.4$, weight; men $61.7{\pm}5.6\;kg$, women $46.2{\pm}7.47\;kg$. We observed the changes of P-Q and Q-T interval, R and T amplitude, mean QRS vector, S-T segment deviation, and P and T vector. The result obtained were summarized as follows: P vector was shifted rightward regardless of the type of stress. T vector was shifted var-in each stress but in the bicycle ergometry T vector was shifted leftward. Mean QRS vector was shifted rightward immediately after the bicycle ergometry. Percentage of the occurrence of the depression of S-T segment was 21.7% at the immediately after the submaximal bicycle ergometry in lead II. The elevation of S-T segment was often observed after the mild stresses. Increased amplitude of T wave in the cold pressor test and decreased amplitude of T wave in the bicycle ergometry were observed. In the bicycle ergometry and other stresses, the precise mechanism of S-T segment changes was unexplained but insufficient repolarization in base or apex of the left ventricle due to heart strain was indicated by so called S-T vector analysis.

  • PDF

Study on Fatigue Behavior and Rehabilitation of Stringer with Coped Section(I) -Experimental Study on Static and Fatigue Behavior- (절취부를 갖는 세로보의 피로거동과 보수·보강에 관한 연구(I) -정적거동 및 피로거동의 실험적 고찰-)

  • Hwang, Yoon Koog;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.363-375
    • /
    • 1997
  • This study encompasses the performance of static and fatigue test for the 8 large scale test specimens to clarify the fatigue behavior of coped stringer and the effect of the repair and strengthening on the damaged stringer of the floor system in steel railway bridges. For the purpose of the research, the actual stress wave for the existing bridge was measured, the basic stress range frequency histogram was made and the equivalent stress range was calculated. Using the result from the equivalent stress range made by adjusting the stress range, the static and fatigue test was carried out by identifying the previous rehabilitation and after. As the result of the static tests, it was revealed that the level of local stress under the S1 specimen test of the real equivalent stress range was similar to tensile strength of the test material, and it was consistent with the requirement of the initiation condition of the fatigue crack. Through the various rehabilitation methods to the damaged specimens, the effects of the repair and reinforcement were analyzed. According to the results of the repair of effect, bolting the high tension bolt over the stop hole was confirmed to be more adequate method than drilling only stop hole to delay the fatigue crack growth. Futhermore, in case of the stringer subjected by bending moment, the reinforcement over the upper flange side was determined to be a useful strengthening method, and the reinforcement to the web of the stringer was not appropriate to accomodate as a adequate strengthening method. Also it was confirmed that the category of the fatigue design for the coped stringer met with the category E specified on the fatigue design criteria of the Highway Standard Specification in Korea.

  • PDF

SHPB Tests for Rock Dynamic Behavior by Shock Loading (충격하중에 의한 암석의 동적거동 측정시험장치)

  • Park, Chul-Whan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.318-324
    • /
    • 2010
  • Dynamic properties of materials by shock loads such as rock blasting and earthquake are recently attracted in the design of aboveground and underground structures. The advance of measuring devices enables to obtain the whole histories of stress and strain in rock specimen of which the failure is completed in several hundred microseconds. The SHPB has been a popular and promising technique to study the dynamic behavior of rock. And the dynamic compressive, tensile and other test with this experiment system are planned to be Suggested Methods of ISRM. This technical paper is to introduced one study article which focuses the design of 3S (special shaped striker) to produce the half-sine wave to eliminate the problems of the rectangular wave. This article is also describing the advantage of half-sine incident wave and size effect of rock dynamic strength.

Application of Bender Element Tests for the Estimation of Maximum shear Modulus in Calibration Chamber (모형 지반의 최대 전단탄성계수 평가를 위한 벤더 엘리먼트 시험의 적용)

  • Kwon, Hyung-Min;Ko, Young-Ju;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1278-1284
    • /
    • 2008
  • This study carried out bender element tests in a calibration chamber in order to estimate the characteristics of soil specimen prepared in a calibration chamber. Basically, the purpose of bender element test is to measure the shear wave velocity. Bender element test cannot only confirm the status of soil specimen deposited in a chamber, but also estimate the consolidation process indirectly. In order to carry out bender element test in a calibration chamber, a pair of bender elements was installed inside the chamber, using the 'ㄷ' shaped frame. For the sandy soils having various relative densities in various stress conditions, the maximum shear modulus was estimated. From the comparison with bender element test results in a triaxial testing device, testing device and procedure was validated.

  • PDF

Permeability Characteristics related with Damage Process in Granites (화강암의 손상과정에 따른 투수계수 특성 연구)

  • 정교철;채병곤;김만일;서용석
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.315-325
    • /
    • 2001
  • A series of laboratory tests was conducted to observe damage process by stress and to understand characteristics of permeability related with rock damage. Rock specimens which were composed of the Cretaceous medium grained granites were experienced of damage stress between 65% and 95% of the compressive strength. Rock deformation by damage process was identified with the elastic wave velocity test. Relationship between rock damage and permeability change was also analyzed by water injection test in the laboratory. According to the results of the tests, damage tends to be occurred from stress level of 80% of the compressive strength and it reduces elastic wave velocity. The damaged specimens with stress more than 80% of the compressive strength showed crack density more than 0.6 and persistent length with good connectivity of cracks. They also have higher permeability than that of specimens with crack density less than 0.6. Considered with the above results, the rock specimens used in this study were fully damaged from stress level of 80% of the compressive strength. Crack initiation and propagation by damage caused good connectivity of cracks through rock specimen. These damage process, therefore, brought high permeability coefficient through water flow conduit in the rock specimen.

  • PDF

Mechanical Properties and Ultrasonic Characteristic of SS400 and STS304 by Simulated Heats (열재현에 의한 SS300 및 STS304의 기계적 성질 및 초음파 특성)

  • Jeong, Jeong-Hwan;Ahn, Seok-Hwan;Park, In-Duck;Nam, Ki-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.127-132
    • /
    • 2003
  • In a today industry, the welding is doing a many portion in structure manufacture. This study is simulated heat of heat-effected zone and researched a mechanical properties and ultrasonic characteristic in used the SS400 and the STS304. As the result mechanical properties of steel that become drawing decreased because of remaining stress by strain gardening according as simulated heat temperature rises, but according as temperature rises in material that do simulated heat after have done annealing, mechanical propensity was improved. The velocity and attenuation become different by effect of remaining stress than effect of material internal microstructure in ultrasonic wave test. In the case of STS304, there was change in mechanical properties by effect that is by strain hardening, but there was no change in material that simulated heat after annealing. When become drawing in ultrasonic waves test, according as simulated heat temperatures rise, change of attenuation coefficient is looked, but material that simulated heat after annealing was no change almost both the volocity and attenuation.

  • PDF

Understanding the Principles of Wheatstone Bridge Circuit (휘트스톤 브리지 회로의 원리에 대한 이해)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.35 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • The Wheatstone bridge is an important electrical circuit that is widely used to measure extremely small resistance changes in strain gages. The strain gages are attached to the structure or specimen whose deformation is to be detected. The Wheatstone bridge finds one of its major applications in the areas of static and dynamic strength tests for various engineering materials. In the split Hopkinson pressure bar (SHPB) system, for example, the bridge circuit is required to measure the dynamic strains of the incident and transmitted bars along which the stress wave propagates. In this article, the principles of the Wheatstone bridge circuit are in detail explained for easy reference during laboratory experiments associated with rock dynamics. Especially, the circuit arrangements of the quater, half, and full bridges are presented with their basic uses.

SPH Modeling of Hydraulics and Erosion of HPTRM Levee

  • Li, Lin;Rao, Xin;Amini, Farshad;Tang, Hongwu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Post-Katrina investigations revealed that most earthen levee damage occurred on the levee crest and landward-side slope as a result of either wave overtopping, storm surge overflow, or a combination of both. In this paper, combined wave overtopping and storm surge overflow of a levee embankment strengthened with high performance turf reinforcement mat (HPTRM) system was studied in a purely Lagrangian and meshless approach, two-dimensional smoothed particle hydrodynamics (SPH) model. After the SPH model is calibrated with full-scale overtopping test results, the overtopping discharge, flow thickness, flow velocity, average overtopping velocity, shear stress, and soil erosion rate are calculated. New equations are developed for average overtopping discharge. The shear stresses on landward-side slope are calculated and the characteristics of soil loss are given. Equations are also provided to estimate soil loss rate. The range of the application of these equations is discussed.

Variation of Beach Processes and Harbor Sedimentation in an Area of Large Tide (조석이 큰 해역에서의 해안과정과 항만퇴적의 변화)

  • 신승호;이중우
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.57-74
    • /
    • 2001
  • In the past, the predictions of beach processes and harbor sedimentation were mainly relied on the hydraulic model tests and empirical methods. In recent years, however, as computers have come into wide use, more accurate models have gradually been developed and thus replaced those conventional methods. For prediction of topographical change near the coastal area, we need informations of wave and current conditions in the numerical model which should be calculated in advance. Numerical model introduced in this study combines wave refraction-diffraction, breaking, bottom friction, lateral mixing, and critical shear stress and three sub-models for simulating waves, currents, and bottom change were briefly discussed. Simulations of beach processes and harbor sedimentation were also described at the coast neighboring Bangpo Harbor, Anmyundo, Chungnam, where the area has suffered accumulation of drifting sand in a small fishing harbor with a wide tidal range. We also made model test for the new layout of the harbor and planned south breakwater for preventing intrusion of sand. Although the model study gave reasonable description of beach processes and harbor sedimentation mechanism, it is necessary to collect lots of field observation data, including waves, tides and bottom materials, etc. for better prediction.

  • PDF