• 제목/요약/키워드: Stress tests

검색결과 3,646건 처리시간 0.034초

마이크로/나노 압입시험에 의한 재료특성평가 (Evaluation of Material Characteristics by Micro/Nano Indentation Tests)

  • 이형일;이진행
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.805-816
    • /
    • 2008
  • The present work reviews the methods to evaluate elastic-plastic material characteristics by indentation tests. Especially the representative stress and strain values used in some papers are critically analyzed. The values should not only represent the load-depth curve, but also represent the whole of deformed material around the impression. We briefly introduce other indentation techniques to evaluate residual stresses, creep properties, and fracture toughness. We also review some technical problems that are related to the accuracy issues in indentation tests.

국내 말뚝재하시험에 대한 지반-말뚝계의 수치해석 (A Numerical Analysis of Soil-Pile Systems for Pile Load Tests at a Korean Site)

  • 오세붕;안태경;최용규
    • 한국해양공학회지
    • /
    • 제13권1호통권31호
    • /
    • pp.94-104
    • /
    • 1999
  • In order to evaluate the performance of axially of laterally loaded piles experimentaly, pile load tests can be carried out at the site Otherwise stress analyses or subgrade reaction analyses can solve the problem. In this study, stress analysis using FLAC code and subgrade reaction analyses using load transfer curves recommended by API(1993) were performed consistently on the basis of a result of site investigations, and the result of analyses was compared with the measured. As a result the behavior of pile heads was analyzed accurately for both axially and laterally loaded tests. Furthermore axially transferred loads were calculated appropriately for the measured and axial loads were transferred mainly mainly by the frictional resistance rather than by the tip resistance. Consequently, it can be commented that both analysis methods of soil-pile systems are applicable at teh objective site and that solutions may be more accurate if material properties from the site investigation are more explicit.

  • PDF

2단쇼트피닝에 의한 피로특성의 향상 (The Improvement of Fatigue Properties by 2-step Shot Peening)

  • 이승호;심동석
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.475-479
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, tests are conducted on spring steel and shot peened specimens. Various tests are accomplished to evaluate mechanical properties influenced by shot peening process, and fatigue tests are also performed to evaluate the improvement of fatigue strength. And then the residual stresses are examined. The mechanical properties of material did not change so much by shot peening. However, the fatigue strength of notched specimen remarkably increased. In the case of 1-step shot peening, fatigue strength increased by about 20% than unpeened specimen. Especially, in the case of 2-step shot peening, fatigue strength increased by about 40%, because the residual compressive stress at surface was higher than that of 1-step shot peened specimen. The fatigue strength and life are closely related to the value and position of maximum compressive residual stress by shot peening.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

터빈용 Cr-Mo-V강의 고온 환경변화에 따른 피로거동에 관한 연구 (A Study on the Fatigue Behaviors of Cr-Mo-V Alloy for Steam Turbine at High Temperature Difference)

  • 송삼홍;강명수
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.173-179
    • /
    • 1997
  • The high temperature fatigue tests were performed using the specimens taken from Cr-Mo-V steel, widely used as thermal power plant turbine materials for examination fatigue behavior of materials in power plants which have been operated for long periods. The fatigue tests at high temperature were performed at the various temperature and applied stress. The results obtained are summarized as follows : The fatigue crack length increases and the fatigue life decreases with temperature and applied stress according to the same number of stress cycle. The fatigue crack propagation and the fatigue life were much influenced by temperature and applied stress.

정규압밀잡토의 비배수전단강도에 미치는 압밀방법의 영향 (Effect of Consolidation Methods on Shear Strength of Normally Consolidated Clay)

  • 홍원표
    • 한국지반공학회지:지반
    • /
    • 제3권2호
    • /
    • pp.41-54
    • /
    • 1987
  • Although natural soil deposits hat.e been consolidated under Ko-stress system, the soil behavior has been predicted in laboratory from the results of tests performed on specimens consolidated under an isotropic stress s).stem. A series of undrained triaxial compression tests are performed on remolded specimens of clay consolidated under both types of stress systems, and the results at.e compared. One dimensional consolidation history induces anisotropy in clalrs, which is called as the stress induced anisotropy. However, if the clays would be reconsolidated under isotropic stress system. the anisotropy of undrained stress비h would be decreased with decrease of overconsolidation ratio. Undrained shear strength of norma]Iy consolidated clay depends on consolidation methods. Both the Rutledge hypothesis and the study of Henkel and Sowa do not agree with the test results obtained in this paper. In addition, a new theory is explained about the relationships between consolidation stresses, water contents and undiained shear strength.

  • PDF

암석 절리면의 거칠기와 전단거동의 특성 분석 (Shear Behavior Characteristics of Rock Joints Considering Roughness Parameters)

  • 김동규;홍영기;김종우
    • 터널과지하공간
    • /
    • 제26권5호
    • /
    • pp.384-395
    • /
    • 2016
  • 절리면의 전단거동 특성을 알아보기 위하여 암석종류와 거칠기가 서로 다른 110개의 자연 암석 절리면 시료에 대하여 거칠기 측정시험과 다단계전단시험을 실시하였다. 시험 암석은 석영반암, 석영안산암, 화강암, 편마암의 4가지 종류이고, 절리면은 JRC값에 따라 3가지 그룹으로 분류하였다. 거칠기 측정시험을 통해 절리면의 거칠기 파라미터를 분석하였으며, 다단계전단시험을 통해 암석종류, 절리면 거칠기, 수직응력의 변화가 각종 전단특성에 미치는 영향을 알아보았다. 절리면의 거칠기와 수직응력이 커질수록 최대전단강도와 전단강성은 증가하였고, 거칠기가 작고 수직응력이 커질수록 팽창각은 감소하였다. 절리면의 전단특성은 암석종류와 거의 무관한 것으로 나타나 모암의 강도보다는 거칠기와 수직응력에 더 큰 영향을 받았다. 또한 동일 암석 절리면에 대한 다단계시험과 직접전단시험의 결과를 비교분석함으로써 두 시험법의 특징을 고찰하였으며, 다단계시험으로 구한 팽창각은 시험 전반부의 낮은 수직응력수준에서 얻은 값만 유효한 것으로 나타났다.

AZ31마그네슘 합금의 고온특성 및 크리이프 변형기구에 관한연구 (A Study on the Characteristics of High Temperature and Mechanisms for Creep Deformation of AZ31 Mg Alloy)

  • 강대민;안정오
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.96-101
    • /
    • 2005
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, uniaxial tension tests at high temperature and creep tests are done in order to investigate the characteristics of high temperature and mechanisms for creep deformation of AZ31 Mg alloy. Yield stress and ultimate tensile stress decreased with increasing temperature, but elongation increased from results of uniaxial tension test at high temperature. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of 473K to 573K and stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $473K{\sim}493K$ and under the stress level of $62.43{\sim}93.59%MPa$, and again at around the temperature of $553K{\sim}573K$ and under the stress level of $23.42{\sim}39.00MPa$, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal, respectively, and a little low to that of the self diffusion of Mg alloy including aluminum. Also rupture surfaces at high temperature have had bigger dimples than those at lower temperature by SEM.

  • PDF

참조응력을 이용한 316LN 스테인리스강의 크리프 해석 (Creep Analysis of Type 316LN Stainless Steel Using Reference Stress)

  • 김우곤;류우석
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2122-2129
    • /
    • 2002
  • Creep damage using a reference stress(RS) was analyzed for type 316LN stainless steel. The generalized K-R equation was reconstructed into the RS equation using a critical stress value $\sigma$. The RS equation was derived from the critical stress in failure time $t_f$ instead of material damage parameter $\omega$, which indicates the critical condition of collapse or approach to gross instability of materials during creep. For obtaining the reference stress, a series of creep tests and tensile tests were conducted with at 55$0^{\circ}C$ and $600^{\circ}C$. The stress-time data obtained from creep tests were applied to the RS equations to characterize the creep damage of type 316LN stainless steel. The value of creep constant r with stress levels was about 18 at 55$0^{\circ}C$ and 21 at $600^{\circ}C$. This value was almost similar with r = 24 in the K-R equation, which was obtained by using damage parameter $\omega$. Relationship plots of creep failure strain and life fraction $(t_f /t_r)$ were also obtained with different λ values. The RS equation was therefore more convenient than the generalized K-R equation, because the measuring process to quantify the damage parameter $\omega$ such as voids or micro cracks in crept materials was omitted. The RS method can be easily used by designers and plant operator as a creep design tool.

연/강성 하중을 받는 복합지반의 응력분담거동에 대한 원심모형시험 (Centrifugal Model Test on Stress Concentration Behaviors of Composition Ground under Flexible/Stiff Surcharge Loadings)

  • 송명근;배우석;안상로;허열
    • 한국지반환경공학회 논문집
    • /
    • 제12권6호
    • /
    • pp.5-15
    • /
    • 2011
  • 본 연구에서는 조립질 말뚝으로 개량된 점토지반의 응력변화 및 응력분담비의 변화를 파악하기 위하여 말뚝의 종류(GCP, SCP)와 하중재하조건, 치환율을 변화시키면서 원심모형실험을 수행하였다. 강성재하실험 결과, 동일 치환율에서 점토지반에서의 연직응력은 유사한 반면, 말뚝상부에서의 연직응력은 GCP로 보강한 경우가 SCP보다 크게 나타났다. 또한, GCP 및 SCP의 치환율이 증가할수록 평균 응력분담비가 거의 비례적으로 증가하였고, GCP로 개량된 경우 평균 응력분담비가 SCP로 개량된 지반에 비해 크게 평가되었다. 또한 연성재하 실험결과 쇄석다짐말뚝 및 모래다짐말뚝의 치환율이 40%인 경우가 가장 큰 응력분담비를 나타내었으며, GCP로 개량된 경우의 평균 응력분담비가 SCP를 설치한 경우보다 약간 크게 나타났다.