• Title/Summary/Keyword: Stress singularity

Search Result 147, Processing Time 0.027 seconds

Generalization and implementation of hardening soil constitutive model in ABAQUS code

  • Bo Songa;Jun-Yan Liu;Yan Liu;Ping Hu
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.355-366
    • /
    • 2024
  • The original elastoplastic Hardening Soil model is formulated actually partly under hexagonal pyramidal Mohr-Coulomb failure criterion, and can be only used in specific stress paths. It must be completely generalized under Mohr-Coulomb criterion before its usage in engineering practice. A set of generalized constitutive equations under this criterion, including shear and volumetric yield surfaces and hardening laws, is proposed for Hardening Soil model in principal stress space. On the other hand, a Mohr-Coulumb type yield surface in principal stress space comprises six corners and an apex that make singularity for the normal integration approach of constitutive equations. With respect to the isotropic nature of the material, a technique for processing these singularities by means of Koiter's rule, along with a transforming approach between both stress spaces for both stress tensor and consistent stiffness matrix based on spectral decomposition method, is introduced to provide such an approach for developing generalized Hardening Soil model in finite element analysis code ABAQUS. The implemented model is verified in comparison with the results after the original simulations of oedometer and triaxial tests by means of this model, for volumetric and shear hardenings respectively. Results from the simulation of oedometer test show similar shape of primary loading curve to the original one, while maximum vertical strain is a little overestimated for about 0.5% probably due to the selection of relationships for cap parameters. In simulation of triaxial test, the stress-strain and dilation curves are both in very good agreement with the original curves as well as test data.

Numerical Analysis of Viscoelastic Cylinders with Mode I Cracks (점탄성 원통의 모드 I 균열 해석)

  • Sim Woo-Jin;Oh Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.259-269
    • /
    • 2006
  • In this paper, the stress intensity factor, energy release rate and crack opening displacement are computed using the finite element method for axisymmetric viscoelastic cylinders with the penny-shaped and circumferential cracks. The triangular elements with quarter point nodes are used to describe the stress singularity around the crack edge. The analytical solutions are also derived by using the elastic-viscoelastic correspondence principle and compared with the numerical results to show the validity and accuracy of the presented method. Viscoelastic materials are assumed to behave elastically in dilatation and like a three-parameter standard linear solid.

New Concept of Stiffness Improvement in Paper and Board

  • Seo, Yung B.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.168-182
    • /
    • 2001
  • A new concept of stock preparation for the increase of bending stiffness in paper and board was proposed. The 'stiff' fibers, which were mechanically not treated or treated slightly to remove fiber curls, were combined with extensively refined fibers (ERF) to produce higher stiffness papers than those where the whole fibers were refined. The combination of 'stiff' fibers and extensively refined fibers produced higher stiffness at the same tensile strength than the control furnish, in which all the fibers are refined together. In this concept, the fibers from recycled papers could be as much useful as the virgin fibers as long as they are stiff enough or they can produce highly bondable fiber fractions by extensive refining. Use of the concept in real paper mill needs considerations such as increase of refining energy, slower drainage, and added drying burden, but savings of wood fibers, utilization of more recycled fibers, and increase of physical properties may offset the negative concerns. The success of this concept implementation in mills, therefore, depends on the wood fiber market around the mills and the proper decision making for the papermakers about how to apply this concept.

  • PDF

On Computation of the Stress Intensity Factors in the V-Notched Plates using a contour integral method (경로적분법 을 이용한 V-노치 평판 의 응력확대계수 계산)

  • 김진우;김선덕;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.232-240
    • /
    • 1984
  • The plane elastostatic boundary value problem with the sharp V-notched singularity is formulated by a contour integral method for determining numerically the stress intensity factors. The integral formula is based on Somigliana type of reciprocal work in terms of displacement and traction vectors on the plate boundary. The characteristic singular solutions can be identified on the basis of traction free boundary conditions of two radial notch edges. Two numerical example examples are treated in detail; a symmetric mode-I type of notched plate with various interior angles and a mixed mode type of cantilever subjected to end shear.

Stress Intensity Factor Calculation Using the Hybrid Formulation of Boundary and Finite Element Method (1st Report) (경계요소-유한요소 혼합법에 의한 균열선단의 응력강도계수 계산 (제1보))

  • In-Sik Nho;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.38-45
    • /
    • 1998
  • It is a tedious and excessive time consuming process to model the local area of crack tip part of structures in calculation of stress intensity factors by FEM. So, in this paper, the hybrid method of FEM and BEM approach was formulated to overcome this type of problems. The multi-domained BEM was adopted to simplify the modelling process of complex geometry and singularity characteristics of crack tip part and the ordinary FEM modelling was used in the rest part. The example calculations shows very good results compared with analytic solutions and other numerical method.

  • PDF

An Application of 2-D BEM with Laplace Transformation to Impact Crack Analysis (균열의 충격해석에 대한 Laplace 변환 2차원 경계요소법의 응용)

  • 조상봉;김태규;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.883-890
    • /
    • 1992
  • Analysis of dynamic or impact problems is very important in engineering fields such as airplanes and automobiles. In the present study, two-dimensional elastodynamic BEM program with Laplace transformation is developed to analyze dynamic or impact problems. Accuracy and efficiency of the BEM program are tested by making the comparision of impact analysis of some models with other's published results. The BEM developed is applied to the impact crack problem and the dynamic stress intensity factors of some impact cracks is obtained by the displacement extrapolation method. It is confirmed to be possible to analyze impact problems accurately with only a little elements in simple models. And also it is found to be careful to use the singular element usually using in static crack problems because that the elastodynamic fundamental solution usually using in static crack problems because that the elastodynamic fundamental solution has more sensitive singularity than the static fundamental solution and to determine the boundary conditions in dynamic problems.

New Concept of Stiffness Improvement in Paper and Board

  • Seo, Yung B.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.63-69
    • /
    • 2002
  • A new concept of stock preparation for the increase of bending stiffness in paper and board was proposed. The "stiff" fibers, which were mechanically not treated or treated slightly to remove fiber curls, were combined with extensively refined fibers (ERF) to produce higher stiffness papers than those where the whole fibers were refined. The combination of "stiff" fibers and extensively refined fibers produced higher stiffness at the same tensile strength than the control furnish, in which all the fibers are refined together. In this concept, the fibers from recycled papers could be as much useful as the virgin fibers as long as they are stiff enough or they can produce highly bondable fiber fractions by extensive refining. Use of the concept in real paper mill needs considerations such as increase of refining energy, slower drainage, and added drying burden, but savings of wood fibers, utilization of more recycled fibers, and increase of physical properties may offset the negative concerns. The success of this concept implementation in mills, therefore, depends on the wood fiber market around the mills and the proper decision making for the papermakers about how to apply this concept. apply this concept.

Free-edge effect in cross-ply laminated plates under a uniform extension

  • Sheng, Hongyu;Ye, Jianqiao
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.377-388
    • /
    • 2004
  • Based on the basic equations of elasticity, free-edge effects on stresses in cross-ply laminated plates are found by using the state space method. The laminates are subjected to uniaxial-uniform extension plate, which is a typical example of general plane strain problem. The study takes into account material constants of all individual material layers and the state equation of a laminate is solved analytically in the through thickness direction. By this approach, a composite plate may be composed of an arbitrary number of orthotropic layers, each of which may have different material properties and thickness. The solution provides a continuous displacement and inter-laminar stress fields across all material interfaces and an approxiamte prediction to the singularity of stresses occurring in the boundary layer region of a free-edge. Numerical solutions are obtained and compared with the results obtained from an alternative numerical method.

Controlled Inquiry Rates of Clinical Interviews in Telehomecare

  • Moskowitz, Samuel E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1945-1950
    • /
    • 2003
  • Conceived to acquire personal information for an electronic medical record, the clinical interview contains probing questions. The number and type of inquiries are assumed to fulfill medical protocols, and therefore are deemed essential for treatment - but the rate can and should be controlled. High rates of inquiry merely intimidate the patient and affect replies. The purpose of this paper is to mathematically formulate permissible rates of clinical interviews held during telehomecare virtual visits and designed to avoid patient anxiety. Mental stress is derived as a function of the weight of importance assigned by the patient, virtual visit duration, and the rate of questioning in the direction of greater sensitivity. Two operations are of interest: Collecting and recording information by the provider, and maintaining synchrony of questions and answers by the patient. The Lorentz transformation yields the patient’s view of the operational rates. Conservation of information momentum is postulated and applied before and after replies are recorded. It is shown that the weight of importance designated by the patient to collecting and recording personal information is driven by a singularity that depends on the rate of questioning. The findings should serve as a guideline in interviewer training programs.

  • PDF

Development of finite 'crack' element (균열 유한 요소의 개발)

  • 조영삼;전석기;임세영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.381-388
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor K/sub I/ is demonstrated and the crack propagation in a plate is simulated.

  • PDF