• 제목/요약/키워드: Stress intensity

검색결과 1,999건 처리시간 0.022초

부분 열유동이 있는 접합 경계면균열의 열응력세기계수 결정 (Thermal Stress Intensity Factors for Partially Insulated Interface Crack under Uniform Heat Flow)

  • 이강용;박상준
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1705-1712
    • /
    • 1994
  • Hilbert problems are derived to evaluate thermal stress intensity factors for a partially insulated crack subjected to vertically uniform heat flow in infinite bonded dissimilar materials. In case of fully insulated crack surface, the present solutions of thermal stress intensity factors are reduced into the same as the previous results. For the homogeneous material, mode II thermal stress intensity factor only exists. However, in the bonded dissimilar materials, both mode I and II thermal stress intensity factors are obtained. Specially, in this case, mode II thermal stress intensity factor is dominent. Also, thermal stress intensity factors are strongly influenced by the material properties. Thermal stress intensity factors decrease when the degree of insulation decreases.

용접잔류응력장 중에서의 Aluminum-Alloy용접재료의 피로균열성장거동 연구 (A study on the fatigue crack growth behavior of aluminum alloy weldments in welding residual stress fields)

  • 최용식;정영석
    • Journal of Welding and Joining
    • /
    • 제7권1호
    • /
    • pp.28-35
    • /
    • 1989
  • The fatigue crack growth behavior in GTA butt welded joints of Al-Alloy 5052-H38 was examined using Single Edge Notched(SEN) specimens. It is well known that welding residual stress has marked influence on fatigue crack growth rate in welded structure. In the general area of fatigue crack growth in the presence of residual stress, it is noted that the correction of stress intensity factor (K) to account for residual stress is important for the determination of both stress intensity factor range(.DELTA.K) and stress ratio(R) during a loading cycle. The crack growth rate(da/dN) in welded joints were correlated with the effective stress intensity factor range(.DELTA.Keff) which was estimated by superposition of the respective stress intensity factors for the residual stress field and for the applied stress. However, redistribution of residual stress occurs during crack growth and its effect is not negligible. In this study, fatigue crack growth characteristics of the welded joints were examined by using superposition of redistributed residual stress and discussed in comparison with the results of the initial welding residual stress superposition.

  • PDF

충격하중에 의해 크랙 주위에 형성되는 응력장에 관한 수치해석적 연구 (Numerical Analysis of Stress Field around Crack Tip under Impact Load)

  • 황갑운;조규종
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.450-460
    • /
    • 1996
  • To investigate the effect of stress wave propagation for crack tip, impact responses of two-dimensional plates with oblique cracks are investigated by a numerical method. In the numerical analysis, the finite element method is used in space domain discretization and the Newmark constant acceleration algorithm is used in time integration. According to the numerical results from the impact response analysis. it is found that the stress fields are bisected at the crack surface and the parts of stress intensity are moved along the crack face. The crack tip stress fields are yaried rapidly. The magnitude of crack tip stress fields are converted to dynamic stress intensity factor. Dynamic sress intensity factor appears when the stress wave has reached at the crack tip and the aspect of change of dynamic stress intensity factor is shown to be the same as the part of the flow of stress intensity.

Experimental and numerical analysis of fatigue behaviour for tubular K-joints

  • Shao, Yong-Bo;Cao, Zhen-Bin
    • Structural Engineering and Mechanics
    • /
    • 제19권6호
    • /
    • pp.639-652
    • /
    • 2005
  • In this paper, a full-scale K-joint specimen was tested to failure under cyclic combined axial and in-plane bending loads. In the fatigue test, the crack developments were monitored step by step using the alternating current potential drop (ACPD) technique. Using Paris' law, stress intensity factor, which is a fracture parameter to be frequently used by many designers to predict the integrity and residual life of tubular joints, can be obtained from experimental test results of the crack growth rate. Furthermore, a scheme of automatic mesh generation for a cracked K-joint is introduced, and numerical analysis of stress intensity factor for the K-joint specimen has then been carried out. In the finite element analysis, J-integral method is used to estimate the stress intensity factors along the crack front. The numerical stress intensity factor results have been validated through comparing them with the experimental results. The comparison shows that the proposed numerical model can produce reasonably accurate stress intensity factor values. The effects of different crack shapes on the stress intensity factors have also been investigated, and it has been found that semi-ellipse is suitable and accurate to be adopted in numerical analysis for the stress intensity factor. Therefore, the proposed model in this paper is reliable to be used for estimating the stress intensity factor values of cracked tubular K-joints for design purposes.

비균질재료의 3차원 균열에 대한 응력확대계수 해석 (Stress Intensity factor Analysis for Three-Dimensional Cracks in Inhomogeneous Materials)

  • 김준수;이준성
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.197-203
    • /
    • 2003
  • Accurate stress intensity factor analyses and crack growth rate of surface -cracked components in inhomogeneous materials are needed fur reliable prediction of their fatigue life and fracture strengths. This paper describes an automated stress intensity factor analysis of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor fur subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

비균질재료의 표면균열에 대한 응력확대계수 해석 (Stress Intensity Factor Analysis for Surface Crack in Inhomogeneous Materials)

  • 김준수;이준성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.816-819
    • /
    • 2002
  • Accurate stress intensity factor analyses and crack growth rate of surface-cracked components in inhomogeneous materials are needed for reliable prediction of their fatigue lift and fracture strengths. This paper describes an automated system for analyzing the stress intensity factors of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor for subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks.

  • PDF

Stress intensity factors for periodic edge cracks in a semi-infinite medium with distributed eigenstrain

  • Afsar, A.M.;Ahmed, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.67-82
    • /
    • 2005
  • This study analyzes stress intensity factors for a number of periodic edge cracks in a semiinfinite medium subjected to a far field uniform applied load along with a distribution of eigenstrain. The eigenstrain is considered to be distributed arbitrarily over a region of finite depth extending from the free surface. The cracks are represented by a continuous distribution of edge dislocations. Using the complex potential functions of the edge dislocations, a simple as well as effective method is developed to calculate the stress intensity factor for the edge cracks. The method is employed to obtain the numerical results of the stress intensity factor for different distributions of eigenstrain. Moreover, the effect of crack spacing and the intensity of the normalized eigenstress on the stress intensity factor are investigated in details. The results of the present study reveal that the stress intensity factor of the periodic edge cracks is significantly influenced by the magnitude as well as distribution of the eigenstrain within the finite depth. The eigenstrains that induce compressive stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn, contributes to the toughening of the material.

일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성 (Characteristics of Parameters for the Distribution of fatigue Crack Growth Lives wider Constant Stress Intensity factor Control)

  • 김선진
    • 한국해양공학회지
    • /
    • 제17권2호
    • /
    • pp.54-59
    • /
    • 2003
  • The characteristics of the parameters for the probability distribution of fatigue crack growth life, using the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length equals the number of cycle curves that are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratios of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Wiubull,, showing a slight dependence on specimen thickness and stress intensity level. The shape parameter, $\alpha$, does not show the dependency of thickness and stress intensity level, but the scale parameter, $\beta$, and location parameter, ${\gamma}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성에 관하여 (Characteristics of Parameters for the Distribution of Fatigue Crack Growth Lives under Constant Stress Intensity Factor Control)

  • 김선진;김영식;정현철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.301-306
    • /
    • 2002
  • The characteristics of parameters for the probability distribution of fatigue crack growth lives by the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length - the number of cycles curves are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratio of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth lives seems to follow the 3-parameter Wiubull and shows a slight dependence on specimen thickness and stress intensity level. The shape parameter, ${\alpha}$, does not show the dependency of thickness and stress intensity level, but the scale parameter, ${\beta}$, and location parameter, ${\upsilon}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

  • PDF

경계요소법을 이용한 수직열유동을 받는 접합경계면 커스프균열의 열응력세기계수 결정 (Boundary Element Analysis of Thermal Stress Intensity Factor for Interface Crack under Vertical Uniform Heat Flow)

  • 이강용;백운천
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1794-1804
    • /
    • 1993
  • The thermal stress intensity factors for interface cracks of Griffith and symmetric lip cusp types under vertical uniform heat flow in a finite body are calculated by boundary element method. The boundary conditions on the crack surfaces are insulated or fixed to constant temperature. The relationship between the stress intensity factors and the displacements on the nodal point of a crack tip element is derived. The numerical values of the thermal stress intensity factors for interface Griffith crack in an infinite body and for symmetric lip cusp crack in a finite and homogeneous body are compared with the previous solutions. The thermal stress intensity factors for symmetric lip cusp interface crack in a finite body are calculated with respect to various effective crack lengths, configuration parameters, material property ratios and the thermal boundary conditions on the crack surfaces. Under the same outer boundary conditions, there are no appreciable differences in the distribution of thermal stress intensity factors with respect to each material properties. But the effect of crack surface thermal boundary conditions on the thermal stress intensity factors is considerable.