• Title/Summary/Keyword: Stress intensity

Search Result 2,000, Processing Time 0.032 seconds

A study on the application of optical fiber sensors to smart composite structures (지능형 복합재 구조물에 대한 광섬유센서의 적용에 관한 연구)

  • Jang, Tae-Seong;Kim, Ho;Lee, Jung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.15-24
    • /
    • 1996
  • In this study, as a part of the basic study for the application of optical fiber sensors to smart composite structures, the integrity of optical fiber sensors embedded within the composite structures was examined and then the laser signal transmitted through optical fiber sensors during the deformation of host structures was investigated. Firstly, it was found that bending test could be substituted for tensile test by comparing cumulative failure distribution based on weakest link theory and introducing the correction factor. Weibull parameters were obtained through the experiments and the correction factor was found to be applied to cumulative failure distribution derived from bending test. The integrity of embedded optical fiber sensors due to the thermal effect was evaluated by the comparison of the mean tensile strengths of cured and uncured optical fibers. Secondly, relationships between stress-strain curve obtained in tensile test of composite laminate and the intensity of laser signal transmitted through embedded optical fibers were examined and the possibility of the effective damage detection using optical fiber sensors was studied.

  • PDF

The Development of Buck Type Electronic Ballast for 250W MHL and Dimming System (250W MHL용 Buck Type 전자식 안정기 및 Dimming 시스템 개발)

  • 박종연;박영길;정동열;김한수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.30-40
    • /
    • 2002
  • This paper studies the electronic ballast development for 250w MH lamps. We have improved the input power factor using a PFC IC. To provide the rating voltage required In the lamps, we have used the buck type dc-dc converter By this method, the stress of switching devices in inverter can be reduced. The inverter is the Full-Bridge type. To eliminate the acoustic resonance phenomena of MH lamps, we have added the high frequency sinewave voltage to the low frequency square-wave voltage to the lamp. We hove developed the igniter circuit using the L, C devices. We could control dimming of the lamp by varying the output voltage of the buck converter. The time of illuminating lamps and luminous intensity could be adjusted by season and time band. The buck converter output voltage can be controlled and the no load and over current situation were Protected by the development of the microprocessor Program.

Raman Scattering Characteristics on 3C-SiC Thin Films Deposited by APCVD Method (APCVD법으로 증착한 3C-SiC 박막의 라만 산란 특성)

  • Jeong, Jun-Ho;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.606-610
    • /
    • 2007
  • This paper describes the Raman scattering characteristics of polycrystalline (poly) 3C-SiC thin films, in which they were deposited on the oxidized Si substrate by APCVD method according to growth temperature. Since the phonon modes were not measured for $0.4{\mu}m$ thick 3C-SiC, $2.0{\mu}m$ thick 3C-SiC deposited on the oxidized Si at $1180^{\circ}C$, in which TO (transverse optical mode) and LO (longitudinal optical mode) phonon modes were appeared at 794.4 and $965.7cm^{-1}$, respectively. The broad FWHM (full width half maximum) can explain that the crystallinity of 3C-SiC deposited at $1180^{\circ}C$ becomes polycrystalline instead of disorder crystal. Additionally, the ratio of intensity $I_{LO}/I_{TO}{\approx}1.0$ of 3C-SiC indicates that the crystal disorder of $3C-SiC/SiO_2/Si$ is small. Compared poly $3C-SiC/SiO_2$ with $SiO_2/Si$ interfaces, $1122.6cm^{-1}$ phonon mode was measured which may belong to C-O bonding and two phonon modes, 1355.8 and $1596.8cm^{-1}$ related to D and G bands of C-C bonding in the Raman range of 200 to $2000cm^{-1}$.

Improvement of Toughness of Tetrafunctional Epoxy (TGDDM) Resin Using Polyamideimide (PAI) Resin (폴리아미드이미드 수지를 이용한 4관능성 에폭시 수지의 강인화 향상)

  • 박수진;허건영;이재락;홍영택;최길영
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.599-606
    • /
    • 2002
  • In this study, 4,4'-tetraglycidyl diaminodiphenyl methane (TGDDM)/polyamideimide (PAI) blends were cured using diaminodiphenyl sulfone (DDS). And the effect of addition of different PAI contents to neat TGDDM was investigated in the thermal, mechanical, and morphological properties of the blends. The cure behavior and thermal stability of the cured specimens were monitored by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. Also, the critical stress intensity factor (K$\_$IC/) was measured in UTM, and the phase separation behavior and final morphology of TGDDM/PAI blends were examined in scanning electron microscopy(SEM). As a result, the cure temperature and cure activation energy (E$\_$a/) were decreased with increasing the PAI content. The decreasing of cure temperature and cure activation energy were probably due to the presence of secondary amine group of PAI backbone used as co-initiator. But, the decomposition activation energy (E$\_$t/) and K$\_$IC/ value were increased up to 5. 10 phr of PAI content, respectively and they were decreased above the PAI contents. These results were explained on the basis of chain scission reaction by etherification. And morphology of blends observed from SEM was confirmed in co-continuous structures.

Fatigue Fracture Characteristics by Corrosion Degradation of 12Cr Alloy Steel (12Cr합금강의 부식열화에 의한 피로파괴 특성)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.996-1003
    • /
    • 2001
  • In order to investigate the fatigue fracture characteristics by corrosion degradation of 12Cr alloy steel, both the fatigue characteristics in air of them artificially degraded during long period and the corrosion fatigue characteristics were experimentally evaluated in various environments which were determined from electro-chemical polarization tests. And also, their fracture mechanisms were analyzed and compared, fractographyically. From their results, the fracture mechanical characteristics of it artificially degraded during long period in the distilled water, 3.5 wt.% NaCl solution and 12.7wt.%(1M) Na$_2$SO$_4$solution of 25, 60 and 90$\^{C}$ did not show distinguishable difference comparing with non-corroded one in regardless of temperature and degradation period. It means that degradation of the material by just surface corrosion does not remarkably affect to fatigue crack growth. On the other hand, the crack growth rates by corrosion fatigue increased due to activity increase of corrosive factors such as OH(sub)-,Cl(sup)- and SO$_4$(sup)- at the crack tip with temperature increase. Therefore, the crack growth rates by corrosion fatigue were more faster than that in air of the artificially degraded specimen due to the such difference of crack growth mechanism.

Mode III Fracture Toughness of Single Layer Graphene Sheet Using Molecular Mechanics (분자역학을 사용한 단층 그래핀 시트의 모드 III 파괴인성)

  • Nguyen, Minh-Ky;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.121-127
    • /
    • 2014
  • An atomistic-based finite bond element model for predicting the tearing mode (mode III) fracture of a single-layer graphene sheet (SLGS) is developed. The model uses the modified Morse potential for predicting the maximum strain relationship of graphene sheets. The mode III fracture of graphene under out-of-plane shear loading is investigated with extensive molecular mechanics simulations. Molecular mechanics is used for describing the displacements of atoms in the area near a crack tip, and linear elastic fracture mechanics is used outside this area. This work shows that the molecular mechanics method can provide a reliable and yet simple method for determining not only the shear properties of SLGS but also its mode III fracture toughness in the armchair and the zigzag directions; the determined mode III fracture toughness values of SLGS are $0.86MPa{\sqrt{m}}$ and $0.93MPa{\sqrt{m}}$, respectively.

Evaluation of Delamination for Fiber Reinforced Metal Laminates Using a Pseudo Crack Model (가균열 모델을 이용한 섬유강화 금속적층재의 층간분리 평가법)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2004
  • If Fiber Reinforced Metal Laminates(FRMLs) were delaminated, the decrease of stiffness and fiber bridging effect would result in the sudden aggravation of fatigue characteristics. It was reported that the delamination of FRMLs resulted from the crack of metal layers and that it depended on the crack growth. While cracks were made in FRMLs containing a saw-cuts under fatigue loading, cracks could be produced or not in FRMLs with circular holes under the same condition. When the FRMLs with the circular holes produce not the crack but the delamination, it is not possible to analyze it by the conventional fracture parameters expressed as the function of the crack. And so, this research suggests a new analytical model of the delamination to make the comparison of the delamination behavior possible whenever the cracks occur or not. Therefore, a new analytical model called Pseudo Crack Model(PCM) was suggested to compare the delaminations whether cracks were made or not. The relationship between the crack energy consumption rate( $E_{crack}$) and the delamination energy consumption rate( $E_{del}$) was discussed and it was also known that the effect of $E_{del}$ was larger than that of $E_{crack}$.

Development of an Elastic Analysis Technique Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 탄성해석 방법 개발)

  • Lee, Jeong-Gi;Heo, Gang-Il;Jin, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.775-786
    • /
    • 2002
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. In the formulation of this method, the continuity condition at each interface is automatically satisfied, and in contrast to finite element methods, where the full domain needs to be discretized, this method requires discretization of the inclusions only. Finally, this method takes full advantage of the pre- and post-processing capabilities developed in FEM and BIEM. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, and the analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane wave scattering problems and plane elastic problems in unbounded solids containing general anisotropic inclusions and voids/cracks or isotropic inclusions.

Effects of annealing temperature on structural and optical properties of CdS Films prepared by RF magnetron sputtering

  • Hwang, Dong-Hyeon;An, Jeong-Hun;Son, Yeong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.233-233
    • /
    • 2010
  • CdS thin films were deposited on glass substrates by R.F. magnetron sputtering method and some of the samples were treated by rapid thermal annealing (RTA) process. Effects of thermal annealing on structural and optical properties were investigated at different temperatures ranging from 100 to $600^{\circ}C$. The crystallographic structure of the films and the size of the crystallites in the films were studied by X-ray diffraction. The crystallite sizes were found to increase, and the X-ray diffraction patterns were seen to sharpen by annealing. Optical properties of the films were calculated using the envelope method and the photoluminescence measurements. The optical properties of the films were seen to be dependent on the film thicknesses. The energy gap of the films was found to decrease by annealing. The band edge sharpness of the optical absorption was seen to oscillate by thermal annealing. Annealing over $400^{\circ}C$ was seen to degrade the optical properties of the film. The best annealing temperature for the films was found to be $400^{\circ}C$ from the optical properties. It is observed that the CdS film annealed at $400^{\circ}C$ reveals the strongest UV emission intensity and narrowest full width at half maximum among the temperature ranges studied. The enhanced UV emission from the film annealed at $400^{\circ}C$ is attributed to the improved crystalline quality of CdS thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size. The results show that heat treatments under optimal annealing condition can provide significant improvements in the properties of CdS thin films.

  • PDF

Effect of Low Atmospheric Pressure on Serum Glutamic Oxaloacetic Transaminase and Lactic Dehydrogenase Activities of Rats (低氣壓이 흰쥐의 血淸 Glutamic Oxaloacetic Transaminase 및 Lactic Dehydrogenase 活性에 미치는 影響)

  • Teresita E. Masancay;Nam, Sang-Yul
    • The Korean Journal of Zoology
    • /
    • v.18 no.3
    • /
    • pp.147-156
    • /
    • 1975
  • In order to determine the influence of low atmospheric pressure on serum glutamic oxaloacetic transaminase (SGOT) and serum lactic dehydrogenase (SLDH) activities of rats, blood samples were collected from laboratory-conditioned male rats of the Sprague-Dawley strain which were randomly grouped into control and the experimental subjected to a series of one hour-exposure a day to low atmospheric pressure of 500 and 380mmHg up to the the time of 15 day. Results obtained indicated that decompression caused marked alterations in SGOT and SLDH levels when compared to that of the control. The trend of increases or decreases in these enzyme levels were similar in both 500 and 380mmHg exposed rats although the changes were greater in the latter group. Thus, generally all the experimental rats showed temporary steady state to low atmospheric pressure. Changes in enzymatic contents depended on the intensity and extent of the environmental stress under study. The lower the atmospheric pressure the greater is the effect on these serum enzyme levels.

  • PDF