• Title/Summary/Keyword: Stress distributions

Search Result 1,005, Processing Time 0.025 seconds

Numerical Analysis on the Effect of Wall Shear Stress Around the Ring Drug-Eluting Stent (고리형 약물분출 스텐트 주위 벽전단응력의 영향에 대한 수치해석)

  • Seo, Tae-Won;Barakat, Abdul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.21-28
    • /
    • 2007
  • The use of drug-eluting stents has dramatically reduced the incidence of restenosis however, much remains to be teamed about the performance of these stouts. In the present study, we tested the hypothesis that the design of drug-eluting stents influences the efficacy of local drug delivery to the arterial wall and that this effect depends on both arterial geometry and the prevailing flow conditions. We performed computational simulations in which the coupled Navier-Stokes and advection-diffusion equations were solved to determine the flow field and drug concentration in the vicinity of model drug-eluting stouts It is found that the characteristics of flow phenomena can be influenced greatly by the ratio of stent diameter to vessel diameter. The presence of drug-eluting stent may have profound effect on wall shear stresses, recirculation sizes and drug distributions. The results show that recirculation zone is influenced by the imposed flow conditions and stent diameter. In pulsatile flow, the low wall shear stress and high drug concentration occur along the arterial wall during the decelerating flow conditions. These results could provide the guideline for future drug-eluting stent designs toward reducing restenosis by affecting local wall shear stress distributions associated with neointimal hyperplasia.

Research on stress distributions around welds of three-planar tubular Y-joints under out-of-plane bending moment

  • Shiliu Bao;Wenhua Wang;Jikai Zhou;Xin Li
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.181-196
    • /
    • 2023
  • Marine structures including offshore wind turbines (OWTs) always work under cyclic loads, which arouses much attention on the fatigue design. The tripod substructure is one of the typical foundation forms for fixed OWTs. The three-planar tubular Y-joint (3Y joint) is one of the important components in fatigue design as it is most likely to have cracks. With the existence of the multiplanar interaction effect, calculating the hot spot stress (HSS) of 3Y joints is complicated. To assist with fatigue design, the distributions of stress concentration factor (SCF) and multiplanar interaction factor (MIF) along weld toe curves induced by the out-of-plane bending moment are explored in this study. An FE analysis method was first developed and verified against experimental results. This method was applied to build a numerical database including 1920 FE models covering common ranges of geometric parameters. A parametric study has been carried out to reveal the distribution patterns of SCF and MIF. After multidimensional nonlinear fittings, SCF and MIF distribution formulas have been proposed. Accuracy and reliability checking prove that the proposed formulas are suitable for calculating the HSS of 3Y joints.

Analysis of Stress Singularities on Interfaces of Friction Welded Dissimilar Materials (마찰용접에 의한 이종재 접합계면에 대한 응력특이성의 해석)

  • Chung, Nam-Yong;Park, Chul-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.142-148
    • /
    • 2005
  • In this paper, the stress singularity on interface of friction welded dissimilar materials was investigated by using 2-dimensional elastic boundary element method. It is required that stress distributions and stress singularities on an interface for friction welded dissimilar materials analize to establish strength evaluation. The stress singularity index ($\lambda$) and stress singularity factor ($\Gamma$) were calculated from the results of stress analysis. The stress singularities on variations for shapes and thickness of friction welded flashes were analized and discussed. This paper suggested that the strength evalution by using the stress singularity factors as fracture parameters, considering the stress singularity on an interface edge of friction welded dissimilar materials were very useful.

A STUDY ON STRESS DISTRIBUTION IN IMZ IMPLANT WITH A PLASTIC OR A TITANIUM IME USING FINITE ELEMENT ANALYSIS (유한요소법을 이용한 IMZ임플란트의 플라스틱 및 티타늄 IME의 응력분포에 관한 연구)

  • Ha Chi-Yang;Choi Boo-Byung;Woo Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.625-642
    • /
    • 1993
  • Whether stress-absorbing elements are functional in an implant system has been an issue of interest in oral implantology. The unique feature of the IMZ implant system is the planned imitation of the stress-distributing function of the structural unit of the tooth, periodontium, and alveolar bone through the use of an intramobile element(IME). The purpose of this study was to compare the difference in the displacement and the stress distibutions of IMZ implant with a polyoxymethylene(POM) or a titanium IME under static load. Two dimensional finite element analysis(FEA) was applied for this study and two finite element models were created. PATRAN program(DPA Co.,USA), a software for FEA, and SUN-SPARC2GX(SUN Co., USA), a workstation computer, were used. $1Kg/mm^2$ of static load was loaded individually on each three point of crown of implant prosthesis ; central fossa(load 1), mesial cusp tip(load 2), distal cusp tip(load 3), The displacements of X- and Y-axis and total displacement were measured at mesial and distal cusp tips, mesial and distal points between crown and IME, and implant apex. The von Mises stress was measured at mesial and distal points between crown and IME, mesial and distal points between IME and TIE, mesial and distal alveolar crest, the mesial and distal midpoints of implant, and implant apex. The difference in resultant values were compared and evaluated statistically using paired t-test. The results were as follows : 1. Under the load 1, all the displacement of implant with titanium IME at 5 measuring points was larger than that of with POM IME except total and Y-axis displacement at implant apex. And the differences in stress distributions with POM and titanium were varied. 2. Under the load 2, all the displacement of implant with titanium IME at 5 measuring points was larger than that of with POM IME except X-axis displacement at distal cusp tip. And the differences in stress distributions were varied. 3. Under the load 3, all the displacement of implant with titanium IME at 5 measuring points was larger than that of with POM IME except Y-axis displacement at mesial cusp tip. And the differences in stress distributions were varied. 4. For the displacement, there was significant difference statistically only in total displacement (P<0.1), but was no significant difference in X- and Y-axis displacement(P>0.1). For the stress, there was no significant difference among the compared values.

  • PDF

Non-uniform Failure in Superplastic Ti-6Al-4V Alloy (초소성 Ti-6Al-4V 합금에서의 불균일 파손)

  • 김태원
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.663-669
    • /
    • 2000
  • A material model has been presented, at the continuum level, for the representation of superplastic deformation coupled with microstructural evolution. The model presented enables the effects of the spatial variation of distributions of grain size to be predicted at the process level. The model has been tested under conditions of both homogeneous and inhomogeneous stress and strain by carrying out detailed comparison of predicted distributions of grain size and their evolutions with experimentally obtained data. Experimental measurements have shown the extent of the spatial variation of the distribution of grain size that exists in the titanium alloy, Ti-6Al-4V. It is shown that whilst not large, the variations in grain size distributions are sufficient to lead to the development of inhomogeneous deformation in test pieces, which ultimately result in localisation of strain and failure.

  • PDF

Stress Analysis of Rotary Turbine Engine Disc in High Temperature (고온에서 회전하는 터빈엔진 디스크의 응력해석)

  • 황수철
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.33-41
    • /
    • 1995
  • This study includes thermal plasticity analyses for a turbine rotor with the simple geometry and the boundary conditions. When centrifugal or thermal stress are applied at the high temperature material of engine blade, stress distributions I material ($\sigma$${\gamma}$${\gamma}$, $\sigma$$\theta$$\theta$, $\tau$${\gamma}$$\theta$, Mises stress) are analyzed by computer simulation(ABQUS) as followings; 1. The maximum stress at the radial direction() is applied at the upper middle part of spline hole. 2. The maximum stress at the tangential direction() is applied at the upper right boundary of spline hole. 3. The maximum shear stress () in () direction is applied at the upper middle part of spline hole. 4. The maximum Mises stress is applied at the upper right boundary of spline hole. This stress is due to the critical stress by which rotor can be fractured according to elapsed time.

  • PDF

Micromechanical Superplastic Model for the Analysis of Inhomogeneous Deformation in Heterogeneous Microstructure (비균일 조직에 따른 불균일 변형 해석을 위한 미시역학적 초소성 모텔)

  • Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1933-1943
    • /
    • 2001
  • A micromechanical model is presented for superplasticity in which heterogeneous microstructures are coupled with deformation behavior. The effects of initial distributions of grain size, and their evolutions on the mechanical properties can be predicted by the model. Alternative stress rate models such as Jaumann rate and rotation incremental rate have been employed to analyze uniaxial loading and simple shear problems and the appropriate modeling was studied on the basis of hypoelasticity and elasto-viscoplasticity. The model has been implemented into finite element software so that full process simulation can be carried out. Tests have been conducted on Ti-6Al-4V alloy and the microstructural features such as grain size, distributions of grain size, and volume fraction of each phase were examined for the materials that were tested at different strain rates. The experimentally observed stress-strain behavior on a range of initial grain size distributions has been shown to be correctly predicted. In addition, the effect of volume fraction of the phases and concurrent grain growth were analyzed. The dependence of failure strain on strain rate has been explained in terms of the change in mechanism of grain growth that occurs with changing strain rate.

Analysis of Voltage Stress in Stator Windings of IGBT PWM Inverter-Fed Induction Motor Systems

  • Hwang Don-Ha;Lee Ki-Chang;Jeon Jeong-Woo;Kim Yong-Joo;Lee In-Woo;Kim Dong-Hee
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.43-49
    • /
    • 2005
  • The high rate of voltage rise (dv/dt) in motor terminals caused by high-frequency switching and impedance mismatches between inverter and motor are known as the primary causes of irregular voltage distributions and insulation breakdowns on stator windings in IGBT PWM inverter-driven induction motors. In this paper, voltage distributions in the stator windings of an induction motor driven by an IGBT PWM inverter are studied. To analyze the irregular voltages of stator windings, high frequency parameters are derived from the finite element (FE) analysis of stator slots. An equivalent circuit composed of distributed capacitances, inductance, and resistance is derived from these parameters. This equivalent circuit is then used for simulation in order to predict the voltage distributions among the turns and coils. The effects of various rising times in motor terminal voltages and cable lengths on the stator voltage distribution are also presented. For a comparison with simulations, an induction motor with taps in the stator turns was made and driven by a variable-rising time switching surge generator. The test results are shown.

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by Using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyeon-Cheol;Lee, Haeng-Nam;Park, Gil-Mun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1561-1568
    • /
    • 2001
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional 180$^{\circ}$curved duct were experimentally investigated. The experimental study for air flows in a curved duct are carried out to measure axial velocity profiles, wall shear stress distributions and entrance length in a square-sectional 180$^{\circ}$curved duct by using the Laser Doppler Velocimeter(LDV) system and the data acquisition. Velocity profiles are obtained using the Rotating Machinery Resolver(RMR)and PHASE software in case of turbulent pulsating flow. Finally, it was plotted by the ORIGIN software. The experiment was conducted in seven sections from the inlet (ø = 0$^{\circ}$) to the outlet (ø=l80$^{\circ}$) at 3 0$^{\circ}$intervals of the duct.

Bayesian approach for prediction of primary water stress corrosion cracking in Alloy 690 steam generator tubing

  • Falaakh, Dayu Fajrul;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3225-3234
    • /
    • 2022
  • Alloy 690 tubing has been shown to be highly resistant to primary water stress corrosion cracking (PWSCC). Nevertheless, predicting the failure by PWSCC in Alloy 690 SG tubes is indispensable. In this work, a Bayesian-based statistical approach is proposed to predict the occurrence of failure by PWSCC in Alloy 690 SG tubing. The prior distributions of the model parameters are developed based on the prior knowledge or information regarding the parameters. Since Alloy 690 is a replacement for Alloy 600, the parameter distributions of Alloy 600 tubing are used to gain prior information about the parameters of Alloy 690 tubing. In addition to estimating the model parameters, analysis of tubing reliability is also performed. Since no PWSCC has been observed in Alloy 690 tubing, only right-censored free-failure life of the tubing are available. Apparently the inference is sensitive to the choice of prior distribution when only right-censored data exist. Thus, one must be careful in choosing the prior distributions for the model parameters. It is found that the use of non-informative prior distribution yields unsatisfactory results, and strongly informative prior distribution will greatly influence the inference, especially when it is considerably optimistic relative to the observed data.