• Title/Summary/Keyword: Stress discontinuity

Search Result 109, Processing Time 0.027 seconds

Characterization of Discontinuity Orientation based on Direction of Excavation (굴착방향에 따른 불연속면 방위각의 특성화)

  • Ro, Byung-Don;Han, Byeung-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1861-1863
    • /
    • 2007
  • In rock mass, great many discontinuity exists that is caused to various factors of formation. But these are parted to some groups by specific category, so called these as discontinuity set. This discontinuity set has unique special characteristics in original rock mass, but for the moment, differ the special quality if external force such as digging etc. acts, specially, change of stress condition. Also, geometrical relation change between discontinuity orientation and direction of excavation various characteristic is seen. Therefore, we introduce here the useful chart that can do specification these relation.

  • PDF

Behavior of shallow 2-Arch tunnel due to excavation under horizontal discontinuity plane (수평 불연속변 하부에 굴착한 얄은 심도의 2-Arch 터널의 거동)

  • Cheon, Eun-Sook;Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.227-237
    • /
    • 2005
  • In this study, the behavior of shallow 2-Arch tunnel due to excavation under horizontal discontinuity plane was verified experimentally. The model tests were carried out by varying the overburden height and the location of the discontinuity plane. The model tests followed exactly the real 2-Arch tunnel construction stages. As a result, it is discovered that stress-transfer mechanism and loosening area around the 2-Arch tunnel depends on the overburden heights and the location of the discontinuity plane. And central pillar load is also dependent on overburden height, location of discontinuity plane and construction stages.

  • PDF

Load-transfer mechanism in the ground with discontinuity planes during tunnel excavation (불연속면이 존재하는 지반에서 터널굴착에 의한 하중전이)

  • Lee, Sang-Duk;Byun, Gwang-Wook;Yoo, Kun-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • In this study, the influence of the presence of discontinuity planes on the load transfer mechanism and the pattern of loosening zone was studied based on the laboratory test. The trap-door and the reaction plates are installed as the bottom plane of the model box. The vertical discontinuity plane is installed in the dry sand. Various overburden heights and locations of discontinuity planes are applied as major factors in this study. The results show that at higher overburden heights over about 1.5 times the excavation width, the ratio of the transferred stress to the insitu stress converges to a certain value even if the overburden height increases further. The results also show that the discontinuity plane gives relatively larger influence on the load transfer mechanism, that produces the unsymmetrical load concentration, when the discontinuity plane locates within the tunnel width. When the discontinuity plane locates outside the tunnel width, the unsymmetrical load concentration is reduced considerably.

  • PDF

A Mesh-free Crack Analysis Technique Using Enriched Approximation and Discontinuity Function (확장변위함수와 불연속함수를 적용한 Mesh-free 균열해석기법)

  • 이상호;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.335-342
    • /
    • 2001
  • In this paper, an improved Element-Free Galerkin (EFG) method is proposed by adding enrichment function to the standard EFG approximation and a discontinuity function is implemented in constructing the shape function across the crack surface. In this method, the singularity and the discontinuity of the crack are efficiently modeled by using initial node distribution to evaluate reliable stress intensity factor, though the standard EFG method requires placing additional nodes near the crack tip. The proposed method enables the initial node distribution to be kept without any additional nodal d.o.f. and expresses the asymptotic stress field near the crack tip successfully. Numerical example verifies the improvement and the effectiveness of the method.

  • PDF

Development of crack analysis technique by using extended finite element method free from mesh-dependency (확장유한요소법을 통한 요소망제약조건이 없는 균열해석기법 개발)

  • 이상호;송정훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.112-119
    • /
    • 2002
  • In this paper, an Extended Finite Element Method is proposed by adding discontinuity and singularity enrichment functions to the standard FEM approximation. In this method, the singularity and the discontinuity of the crack are efficiently modeled by using initial regular mesh without refining mesh near the crack tip, so that it enables express the asymptotic stress field near crack tip and crack surface successfully. The developed method was verified by evaluating crack tip stress profile and stress intensity factor of mode Ⅰ/mode Ⅱ fracture problems and the results showed the effectiveness and robustness for fracture problem.

  • PDF

Finite Element Modeling of Tunnels Constructed in Discontinuous Rock Mass (불연속암반내 시공되는 터널의 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Chong-Seok;Lee, Ho;Lee, Kwang-Myoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.221-234
    • /
    • 1999
  • This paper deals with the application of joint element in the finite element modeling of discontinuities encountered during rock tunneling. A nodal displacement joint element was implemented in a two dimensional finite element program GEOFE2D. The applicability of the joint element for modeling of discontinuities and the numerical stability of the implemented algorithm were examined by comparing the results of reduced small scale model tests as well as commercially available FEM program. The GEOFE2D was then used to analyze a tunnel crossed by a major discontinuity for the purpose of understanding the effect of discontinuity on the tunnel behavior. In addition, a modeling technique for the junction of discontinuity and shotcrete lining was presented. The results of analysis indicated that the stress-strain field around the tunnel is significantly altered by the presence of discontinuity, and that the stresses in the shotcrete lining considerably increase at the junction of the shotcrete lining and the discontinuity. It is therefore concluded that the major discontinuities must be carefully modeled in the finite element analysis of a tunneling problem in order to obtain more reliable results close to actual tunnel behavior.

  • PDF

A Study on the Stress Concentration Coefficient due to the Change of Ellipse on a Square Plate (사각 평판에서 타원의 형상 변화에 따른 응력집중계수에 관한 연구)

  • 박정호;김형준;박기훈;조우석;제승봉;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1434-1437
    • /
    • 2003
  • Sometimes open holes are required for the function and the weight reduction of structure and machinery. However, the serious stress concentration occurs because of the geometric discontinuity caused by the holes and cutting section. In this study, it is attempted to obtain the stress concentration coefficients of the inner surface of the hole boundary by changing the position and the shape of holes on the homogeneous isotropic plate. And the effects on the plate are investigated. The results show that the stress level becomes low and the distribution area widens the position of stress concentration changes as the ratio a/b increases and change to a circle. And as the ratio a/l decreases, the stress concentration reduces. As the plate with three holes. the stress $\sigma$$\_$x/ and $\tau$$\_$xy/ of hole 1,3 becomes high, especially $\sigma$$\_$x/ dominant and high.

  • PDF

A Study on the Stress Concentration Coefficient due to the Change of Position and Shape of Ellipse on a Square Plate (사각 평판에서 타원의 위치와 형상 변화에 따른 응력집중계수의 변화에 관한 연구)

  • 최경호;권영석;박기훈;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.833-836
    • /
    • 2002
  • Sometimes open holes are required for the function and the weight reduction of structure and machinery. However, the serious stress concentration occurs because of the geometric discontinuity caused by the holes and cutting section. In this study, it is attempted to obtain the stress concentration coefficients of the inner surface of the hole boundary by changing the position and the shape of holes on the homogeneous isotropic plate. And the effects on the plate are investigated. The results show that the stress level becomes low and the distribution area widens the position of stress concentration changes as the ratio ah increases and change to a circle. And as the ratio a/l decreases, the stress concentration reduces.

  • PDF

An experimental study on behavior of tunnel in jointed rock mass (절리암반내 터널라이닝 거동에 관한 실험적 연구)

  • Oh, Young-Seok;Park, Yong-Won;Yoon, Hyo-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.315-326
    • /
    • 2004
  • This study performed model tunnel tests in order to investigate the influence of discontinuity condition of rock mass to the stress and deformation of tunnel lining. Tests were carried out changing the direction of main joint and lateral earth pressure condition of rock mass. Test results revealed that the axial force in tunnel lining showed a tendency of decrease with the presence of joints. It decreased much with the increase of lateral earth pressure coefficient. And, it also showed that the location or maximum displacement and maximum stress in lining were changed by the direction of main joint of rock mass. The tangential stress and normal stress showed the difference above the maximum twenty times as lateral earth pressure coefficient due to effect of joints increased. Also, these tendencies of concentration of tensile stress in tunnel lining were confirmed by elastic theory.

  • PDF

대만 고속전철 교량의 레일-구조물 상호작용 평가

  • Gwon Gi-Jun;Kim Yong-Gil;Park Byeong-Gi
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.442-449
    • /
    • 2000
  • In railway structure, long rail causes the increase of stress. Especially, additional stress and displacement are caused by the discontinuity and variations of the stiffness of substructures in the section of bridges. In the other words, binding forces like the connection strengths and friction force between ties and ballasts play the role of resistance forces.(omitted)

  • PDF