• Title/Summary/Keyword: Stress corrosion crack growth

Search Result 89, Processing Time 0.02 seconds

Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes (증기발생기 전열관에서의 응력부식균열 성장해석)

  • 신규인;박재학;김흥덕;정한섭
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.57-65
    • /
    • 2000
  • The stress corrosion crack growth is simulated assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noted that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF

Study on Characteristics of Corrosion Fatigue Crack Growh Rate of SUS 304 Stainlss Steel (SUS 304강의 부식피로균열 운전속도 특성에 관한 연구)

  • 임우조;김부안
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.93-100
    • /
    • 1987
  • Corrosion fatigue cracking of the austenitic stainless steel(bese metal & heat affected zone by TIG weld) was studied experimentally under the environments of various specific resistance and air. The characteristics of corrosion fatigue crack growth rate and the environmental constants of paris' rule were investigated for SUS 304 weldments in the various specific resistance. The influences of stress intensity factor range and corrosion on the crack growth rate were compared. The characteristics of corrosion fatigue cracking for the weldments were inspected from mechanical, electrochemical and microstructural point of view. Main results obtained are as follows: 1) As the specific resistance decreases, the environmental constant C of paris'rule increases(hence the corrosion fatigue crack growth rate is rapid), but the environmental constant m decreases, so the effect of corrosion to the crack growth rate is more susceptible than thet of stress intensity factor range. 2) As the stress intensity factor range decreases, the corrosion fatigue crack growth rate of heat affected zone is more susceptible than that of the base metal. 3) The corrosion fatigue crack growth rate of the heat affected zone is more rapid than that of the base metal, because of the phenomenon of softening and the less noble potential coused by wedlding heat cycle. 4) The corrosion fatigue cracking of SUS 304 weldment appears transgranular fracture.

  • PDF

Primary Water Stress Corrosion Crack Growth Rate Tests for Base Metal and Weld of Ni-Cr-Fe Alloy (니켈 합금 모재 및 용접재의 일차수응력부식균열 균열성장속도 시험)

  • Lee, Jong Hoon
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • Alloy 600/182 with excellent mechanical/chemical properties have been utilized for nuclear power plants. Although both alloys are known to have superior corrosion resistance, stress corrosion cracking failure has been an issue in primary water environment of nuclear power plants. Therefore, primary water stress corrosion crack (PWSCC) growth rate tests were conducted to investigate crack growth properties of Alloy 600/182. To investigate PWSCC growth rate, test facilities including water chemistry loop, autoclave, and loading system were constructed. In PWSCC crack growth rate tests, half compact-tension specimens were manufactured. These specimens were then placed inside of the autoclave connected to the loop to provide primary water environment. Tested conditions were set at temperature of $360^{\circ}C$ and pressure of 20MPa. Real time crack growth rates of specimens inside the autoclave were measured by Direct Current potential drop (DCPD) method. To confirm inter-granular (IG) crack as a characteristic of PWSCC, fracture surfaces of tested specimens were observed by SEM. Finally, crack growth rate was derived in a specific stress intensity factor (K) range and similarity with overseas database was identified.

Validation of Extended Finite Element Method for Fatigue and Stress Corrosion Crack Growth Analysis in Nuclear Piping (원자력 배관의 피로 및 응력부식결함성장 해석을 위한 확장유한요소법의 적용성 검증)

  • Gi-Bum Lee;Nam-Su Huh
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.2
    • /
    • pp.138-148
    • /
    • 2024
  • This study investigates the application of the extended finite element method (xFEM) for fatigue and stress corrosion crack growth analysis in nuclear piping. Stress corrosion crack growth analysis was performed using xFEM considering various element size ratio. The results are compared with ASME Section XI procedures and the AI-FEM program. An appropriate element size ratio was presented through the comparison of crack growth results. The proposed element size ratio was validated in the context of piping fatigue crack growth. The xFEM results applying the proposed element size criteria showed good agreement with ASME Section XI and AI-FEM for both stress corrosion and fatigue crack growth. Additionally, the applicability of xFEM to complex crack shapes is demonstrated through comparison with AI-FEM results. The study concludes that xFEM can effectively simulate crack growth in nuclear piping with various thicknesses, crack geometries, and loading conditions when using the proposed modeling criterion. This research contributes to enhancing the applicability of xFEM in flaw evaluations for nuclear piping, providing an alternative to traditional finite element methods and code-based procedures.

Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes (증기발생기 전열관에서의 응력부식 균열성장해석)

  • Shin, K.I.;Park, J.H.;Joo, J.W.;Shin, E.S.;Kim, H.D.;Chung, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.19-24
    • /
    • 2000
  • Stress corrosion crack growth is simulated after assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noticed that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF

Stress Corrosion Cracking in the Pre-Cracked Specimens of Type 403 Stainless Steel

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-19
    • /
    • 2004
  • Crack growth rate and threshold stress intensity factor for stress corrosion cracking(SCC), $K_{ISCC}$ were measured for type 403 stainless steel in 3,5% NaCl solution at room temperature and SCC was monitored by electrochemical noise technique during $K_{ISCC}$ testing. In rising load test, pits were formed at the tip of pre-crack for the pre-cracked compact tension specimen unlike in smooth round specimen in which only unstable pits were observed and hence immune to SCC. Micro-cracks were found to initiate from the pits in the former specimen, and initiation of micro-crack as well as macro-crack was detected by electrochemical noise technique in rising load $K_{ISCC}$ tests. Crack growth rate increased with increasing either displacement rate or stress intensity factor at crack initiation and was higher in rising load $K_{ISCC}$ test compared to constant load $K_{ISCC}$ test at given stress intensities.

Consideration of Methods Evaluating the Growing Process of Stress Corrosion Cracking of the Sensitized 18-8 Austenitic Stainless Steel in High Temperature Water Based on Electric Circuit Theory: The Effects of Stress Factors

  • Tsukaue, Yasoji
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.103-111
    • /
    • 2007
  • The effect of stress factors on the growing process of stress corrosion cracking (SCC) of the sensitized 18-8 stainless steel in high temperature water was investigated using equations of crack growth rate derived from applying electric circuits to SCC corrosion paths. Three kinds of cross sections have to be considered when electric circuit is constructed using total current. The first is ion flow passage area, $S_{sol}$, of solution in crack, the second is total dissolving surface area, $S_{dis}$, of metal on electrode of crack tip and the third is dissolving cross section, $S_{met}$, of metal on grain boundary or in base metal or in welding metal. Stress may affect each area. $S_{sol}$ may depend on applied stress, $\sigma_{\infty}$, related with crack depth. $S_{dis}$ is expressed using a factor of $\varepsilon(K)$ and may depend on stress intensity factor, K only. SCC crack growth rate is ordinarily estimated using a variable of K only as stress factor. However it may be expected that SCC crack growth rate depends on both applied stress $\sigma_{\infty}$ and K or both crack depth and K from this consideration.$\varepsilon(K)$ is expressed as ${\varepsilon}(K)=h_2{\cdot}K^2+h_3{\cdot}K^3$ when $h_{2}$ and $h_{3}$ are coefficients. Also, relationships between SCC crack growth rate, da/dt and K were simulated and compared with the literature data of JBWR-VIP-04, NRC NUREG-0313 Rev.2 and SKIFS Draft. It was pointed out in CT test that the difference of distance between a point of application of force and the end of starter notch (starting point of fatigue crack) may be important to estimate SCC crack growth rate. An anode dissolution current density was quantitatively evaluated using a derived equation.

해수환경에서 강 용접부의 환경강도평가에 관한 연구 1

  • 정세희;김태영;나의균
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.56-63
    • /
    • 1988
  • The effects of PWHT (poste weld heat treatment) and stress simulating the residual stress during PWHT in weld HAZ of low and high strength steels on corrosion fatigue crack growth were evaluated. The obtained results are summarized as follows. 1. Fatigue crack growth rate of HAZ in air and 3.5% NaCl solution was slower than that of parent due to the signgularity in weld HAZ. 2. In the case of HT-80, 3.5% NaCl solutio nacts to accelerate the crack growth for all specimens, and the sensitivity of as-weld to corrosion environment was the greatest among other PWHT specimens. 3. Corrosion fatigue crack growth of parent, as-weld and PWHT speciments ofr SS41 as well as SM53B was retarded in comparison with the fatigue crack growth in air. 4. There was a tendency that crack growth of PWHT specimens subjected $10kg/mm^2$ was faster than that of PWHT specimens without stress during PWHT. 5. The retardation phenomenon of crack growth in corrosion environment is attributed to the crack branching decreased .DELTA.K due to the corrosion products and multi-cracks.

  • PDF

Stress Corrosion Crack Growth Evaluation in Primary Loop of Nuclear Power Plant (원전 주배관의 응력부식 가상결함 성장에 대한 잔류응력 영향 평가)

  • Yang, J.S.;Park, C.Y.;Yoon, K.S.;Kang, S.Y.;Oho, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.274-277
    • /
    • 2004
  • The most important mode of subcritical crack growth is primary water stress corrosion crack, which was the reported mechanism from the root cause analysis of the crack in the bimetallic welds. Stress corrosion crack growth evaluations was carried out for several flaw shapes of both axial and circumferential flaws, using the steady-state stresses including residual stresses. This evaluation considered the possibility of additional flaws in the primary loops of nuclear power plant, even though no such flaws have been identified by Ultrasonic Test. Consequently, Results show that the predicted flaw sizes will determine acceptability for continued service and maintenance.

  • PDF

Stress Corrosion Crack Rate of STS 304 Stainless Steel in High Temperature Water (고온수중에서 STS 304 스테인리스강의 응력부식균열 성장속도)

  • Kim, Jeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.156-162
    • /
    • 2000
  • Sensitized STS 304 stainless steel crack growth rate(CGR) in high temperature water was investigated under trapezoidal wave loading test using fracture mechanics techniques. The CGR, due to stress corrosion cracking(SCC), were systematically measured as a function of the stress intensity factor and stress. holding time under trapezoidal wave loading. In high temperature water, CGR was enhanced by a synergistic effects in combination with an aggressive environment and mechanical damage. The CGR, $(da/dN)_{env}$ was basically described as a summation of the environmentally assisted crack growth rate $(da/dN)_{SCC}$, $(da/dN)_{CF}$ and fatigue crack growth rate in air $(da/dN)air,. The CGR, $(da/dN)_{env}$, increased linearly with increasing stress holding time. The CGR, $(da/dN)_{SCC}$ decreased linearly with increasing stress holding time. Fracture surface mode varied from trans-granular cracking to inter-granular cracking with increasing stress holding time.