• Title/Summary/Keyword: Stress adaptation

Search Result 535, Processing Time 0.03 seconds

Relationships between Integration, Clinical Practice Stress, Department Satisfaction in Nursing Students (일 간호대학생의 통합성과 임상실습 스트레스가 학과만족도에 미치는 영향)

  • Baek, Myung-Wha;Lee, Mi-Suk;Kim, Ji-Youn
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.543-551
    • /
    • 2022
  • The purpose of this study was to understand the integration and clinical practice stress of nursing students and to understand the relationship with department satisfaction. Data collection was from June to July 2021. Data were collected through questionnaires consisting of scales of integration, clinical practice stress, and departmental satisfaction, targeting 3rd and 4th grade nursing students who have had more than one clinical practice experience. A total of 394 copies were analyzed using the SPSS program to analyze the data. As a result of the study, integration showed a positive correlation with department satisfaction (r=.412, p<.01) and a negative correlation with clinical practice stress (r=-.193, p<.01). The predictive factors affecting the department satisfaction of nursing students were integration (β=.406, p<.001) and admission motivation (β=.166, p=.006), which accounted for 20% of the total variance. Integration Performance It was confirmed that the motivation for entering the nursing department affects department satisfaction. In order to increase the department satisfaction of nursing students, it is thought that it is necessary to operate an integration promotion program and department adaptation program from the early stage of admission.

Effects of Early Heat Conditioning on Performance in Broilers exposed to Heat Stress (사전 고온 적응이 고온 스트레스를 받은 육계의 생산성에 미치는 영향)

  • Yoon, HyungSook;Hwangbo, Jong;Yang, Young-Rok;Kim, Jimin;Kim, Yeon-Hwa;Park, Byungsung;Choi, Yang-Ho
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • Heat manipulation at early age has been known to help chickens cope with heat stress later in life. The present study was conducted to determine the effects of early heat conditioning at 5 days of age on performance in broilers when re-exposed to heat stress later in life. Day-old, 256 Arbor Acre boiler chicks were housed in two identical rooms where all broilers were exposed to a 23-h light: 1-h dark cycle throughout the study and provided with feed and water ad libitum. At the age of 5 days, one group was exposed to $37^{\circ}C$ for 24 hours and then returned to the temperature at which control birds were maintained (early heat condition group) while the other was maintained without heat modulation (Control). On 21 days, broilers were regrouped into 4 groups (CON+CON: control+control; CON+HS: control+heat stress; HC+CON: heat conditioning+control; HC+HS: heat conditioning+heat stress), and given 7 days for adaptation. On 28 days, birds in one room were exposed to heat stress ($21^{\circ}C{\rightarrow}31^{\circ}C$) for 3 days whereas those in the other were at room temperature. Heat stress resulted in decreased feed intake, water intake, and body weight gain (P<0.05), but increased rectal temperature and mortality (P<0.05). No beneficial effects of heat conditioning were detected when broilers were exposed to heat stress again at later in life. The present results were discussed together with other studies regarding possible differences in methods such as ages of breeders and strains, which may have resulted in the failure of heat conditioning to help broilers resist heat stress.

Activation of autophagy at cerebral cortex and apoptosis at brainstem are differential responses to 835 MHz RF-EMF exposure

  • Kim, Ju Hwan;Yu, Da-Hyeon;Kim, Hak Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.179-188
    • /
    • 2017
  • With the explosive increase in exposure to radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones, public concerns have grown over the last few decades with regard to the potential effects of EMF exposure on the nervous system in the brain. Many researchers have suggested that RF-EMFs can effect diverse neuronal alterations in the brain, thereby affecting neuronal functions as well as behavior. Previously, we showed that long-term exposure to 835 MHz RF-EMF induces autophagy in the mice brain. In this study, we explore whether shortterm exposure to RF-EMF leads to the autophagy pathway in the cerebral cortex and brainstem at 835 MHz with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Increased levels of autophagy genes and proteins such as LC3B-II and Beclin1 were demonstrated and the accumulation of autophagosomes and autolysosomes was observed in cortical neurons whereas apoptosis pathways were up-regulated in the brainstem but not in the cortex following 4 weeks of RF exposure. Taken together, the present study indicates that monthly exposure to RF-EMF induces autophagy in the cerebral cortex and suggests that autophagic degradation in cortical neurons against a stress of 835 MHz RF during 4 weeks could correspond to adaptation to the RF stress environment. However, activation of apoptosis rather than autophagy in the brainstem is suggesting the differential responses to the RF-EMF stresses in the brain system.

Effective Exon-Intron Structure Verification of a 1-Pyrroline-5-Carboxylate-Synthetase Gene from Halophytic Leymus chinensis (Trin.) Based on PCR, DNA Sequencing, and Alignment

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Korean Journal of Plant Resources
    • /
    • v.23 no.6
    • /
    • pp.526-534
    • /
    • 2010
  • Genomes of clusters of related eukaryotes are now being sequenced at an increasing rate. In this paper, we developed an accurate, low-cost method for annotation of gene prediction and exon-intron structure. The gene prediction was adapted for delta 1-pyrroline-5-carboxylate-synthetase (p5cs) gene from China wild-type of the halophytic Leymus chinensis (Trin.), naturally adapted to highly-alkali soils. Due to complex adaptive mechanisms in halophytes, more attentions are being paid on the regulatory elements of stress adaptation in halophytes. P5CS encodes delta 1-pyrroline-5-carboxylate-synthetase, a key regulatory enzyme involved in the biosynthesis of proline, that has direct correlation with proline accumulation in vivo and positive relationship with stress tolerance. Using analysis of reverse transcription-polymerase chain reaction (RT-PCR) and PCR, and direct sequencing, 1076 base pairs (bp) of cDNA in length and 2396 bp of genomic DNA in length were obtained from direct sequencing results. Through gene prediction and exon-intron structure verification, the full-length of cDNA sequence was divided into eight parts, with seven parts of intron insertion. The average lengths of determinated coding regions and non-coding regions were 154.17 bp and 188.57 bp, respectively. Nearly all splice sites displayed GT as the donor sites at the 5' end of intron region, and 71.43% displayed AG as the acceptor sites at the 3' end of intron region. We conclude that this method is a cost-effective way for obtaining an experimentally verified genome annotation.

Antioxidant Effects of Sanchae-namul in Mice Fed High-Fat and High-Sucrose Diet (고지방과 고당질 식이 섭취 마우스에 있어서 산채나물의 항산화 효과)

  • Choi, Ha-Neul;Kang, Su-Jung;Choe, Eunok;Chung, Lana;Kim, Jung-In
    • Korean journal of food and cookery science
    • /
    • v.30 no.4
    • /
    • pp.369-377
    • /
    • 2014
  • Obesity increases oxidative stress, which could contribute to the development of insulin resistance and hyperglycemia. The purpose of this study was to investigate the hypoglycemic and antioxidant effect of sanchae-namul (SN) in mice with diet-induced obesity. Five-week-old male C57BL/6J mice were fed a basal or high-fat and high-sucrose (HFHS) diet with or without 3% freeze-dried SN powder composed of chamnamul, daraesoon, miyeokchwi, bangpung namul, and samnamul for 12 weeks after a 1-week adaptation. After sacrifice, serum glucose and insulin were measured and the homeostasis model assessment for insulin resistance (HOMA-IR) was determined as well. Hepatic lipid peroxidation, glutathione (GSH), and activities of the antioxidant enzymes were determined. SN given at 3% of the total diet did not significantly influence body weight and food intake in mice fed the HFHS diet. Serum glucose and insulin levels, as well as HOMA-IR values, were significantly lower in the SN group than those in the HFHS group. Thiobarbituric acid reactive substances (TBARS) levels in the liver were decreased significantly in the SN group compared with those in the HFHS group. SN significantly increased the GSH levels and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver compared with those in the HFHS group. Overall, these findings suggest that SN may be useful in alleviating insulin resistance and hyperglycemia in mice fed HFHS diet; further, the improvement of insulin resistance could partly occur by reducing the oxidative stress.

Biochemical Characterization of Transgenic Tobacco Plants Expressing a Human Dehydroascorbate Reductase Gene

  • Kwon, Suk-Yoon;Ahn, Young-Ock;Lee, Haeng-Soon;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.316-321
    • /
    • 2001
  • Dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1) catalyzes the reduction of DHA to reduced ascorbate (AsA) using glutathione (GSH) as the electron donor in order to maintain an appropriate level of ascorbate in plant cells. To analyze the physiological role of DHAR in environmental stress adaptation, we developed transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants that express a human DHAR gene isolated from the human fetal liver cDNA library in the chloroplasts. We also investigated the DHAR activity, levels of ascorbate, and GSH. Two transgenic plants were successfully developed by Agrobacterium-mediated transformation and were confirmed by PCR and Southern blot analysis. DHAR activity and AsA content in mature leaves of transgenic plants were approximately 1.41 and 1.95 times higher than in the non-transgenic (NT) plants, respectively In addition, the content of oxidized glutathione (GSSG) in transgenic plants was approximately 2.95 times higher than in the NT plants. The ratios of AsA to DHA and GSSG to GSH were changed by overexpression of DHAR, as expected, even though the total content of ascorbate and glutathione was not significantly changed. When tobacco leaf discs were subjected to methyl viologen at $5\;{\mu}M$, $T_0$ transgenic plants showed about a 50% reduction in membrane damage compared to the NT plants.

  • PDF

Effects of Salinity on the Growth, Survival and Stress Responses of Red Spotted Grouper Epinesphelus akaara and Hybrid Grouper E. akaara ♀ × E. lanceolatus ♂ (염분변화에 따른 붉바리(Epinephelus akaara)와 대왕붉바리 (E. bruneus ♀×E. lanceolatus ♂)의 성장, 생존 및 스트레스 반응)

  • Lim, Sang Gu;Han, Sang Bum;Lim, Han Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.612-619
    • /
    • 2016
  • In this study, we crossbred Epinephelus akaara and E. lanceolatus to produce a hybrid grouper with faster growth and adaptation to domestic aquaculture environments. The plasma cortisol and glucose levels and osmoregulation (stress response indicators) of the hybrid grouper, E. akaara ♀ × E. lanceolatus ♂, were investigated under several salinity levels (32, 24, 16, and 8 psu). The body lengths and weights of E. akaara (8.2 ± 0.1 cm, 8.3 ± 0.4 g) and the hybrid (8.6 ± 0.1 cm, 10.0 ± 0.4 g) were similar at the start of the experiment, but were significantly different at the end of the experiment. Juveniles of both E. akaara and the hybrid showed greater weight gain, specific growth, and feed conversion rate (FCR) under low salinity of 16 psu. Under the 8 psu treatment, the juvenile E. akaara all died, while the hybrid juveniles survived. Plasma cortisol levels were not affected by lower salinity in both species. The above results indicate that the hybrid is more tolerant of low salinity than is E. akaara, although both species exhibited higher growth and FCR at 16 psu, lower than the salinity of natural seawater. Thus, juveniles of both E. akaara and the hybrid can be more effectively cultured in brackish areas or waters with salinity lower than that of seawater.

Hypoglycemic and antioxidant effects of Daraesoon (Actinidia arguta shoot) in animal models of diabetes mellitus

  • Lee, Ah-Yeon;Kang, Min-Jung;Choe, Eunok;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.262-267
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: The primary objective of the treatment of diabetes mellitus is the attainment of glycemic control. Hyperglycemia increases oxidative stress which contributes to the progression of diabetic complications. Thus, the purpose of this study was to investigate the hypoglycemic and antioxidant effects of Daraesoon (Actinidia arguta shoot) in animal models of diabetes mellitus. MATERIALS/METHODS: Rats with streptozotocin-induced diabetes received an oral administration of a starch solution (1 g/kg) either with or without a 70% ethanol extract of Daraesoon (400 mg/kg) or acarbose (40 mg/kg) after an overnight fast and their postprandial blood glucose levels were measured. Five-week-old C57BL/6J mice were fed either a basal or high-fat/high-sucrose (HFHS) diet with or without Daraesoon extract (0.4%) or acarbose (0.04%) for 12 weeks after 1 week of adaptation to determine the effects of the chronic consumption of Daraesoon on fasting hyperglycemia and antioxidant status. RESULTS: Compared to the control group, rats that received Daraesoon extract (400 mg/kg) or acarbose (40 mg/kg) exhibited a significant reduction in the area under the postprandial glucose response curve after the oral ingestion of starch. Additionally, the long-term consumption of Daraesoon extract or acarbose significantly decreased serum glucose and insulin levels as well as small intestinal maltase activity in HFHS-fed mice. Furthermore, the consumption of Daraesoon extract significantly reduced thiobarbituric acid reactive substances and increased glutathione levels in the livers of HFHS-fed mice compared to HFHS-fed mice that did not ingest Daraesoon. CONCLUSIONS: Daraesoon effectively suppressed postprandial hyperglycemia via the inhibition of ${\alpha}$-glucosidase in STZ-induced diabetic rats. Chronic consumption of Daraesoon alleviated fasting hyperglycemia and oxidative stress in mice fed a HFHS diet.

Chamnamul [Pimpinella brachycarpa (Kom.) Nakai] ameliorates hyperglycemia and improves antioxidant status in mice fed a high-fat, high-sucrose diet

  • Lee, Soo-Jin;Choi, Ha-Neul;Kang, Min-Jung;Choe, Eunok;Auh, Joong Hyuck;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.446-452
    • /
    • 2013
  • Chronic consumption of a high-fat, high-sucrose (HFHS) diet increases insulin resistance and results in type 2 diabetes mellitus in C57BL/6J mice. Hyperglycemia in diabetics increases oxidative stress, which is associated with a high risk of diabetic complications. The purpose of this study was to examine the hypoglycemic and antioxidant effects of chamnamul [Pimpinella brachycarpa (Kom.) Nakai] in an animal model of type 2 diabetes. The ${\alpha}$-glucosidase inhibitory activity of a 70% ethanol extract of chamnamul was measured in vitro. Five-week-old male C57BL/6J mice were fed a basal or HFHS diet with or without a 70% ethanol extract of chamnamul at a 0.5% level of the diet for 12 weeks after 1 week of adaptation. After sacrifice, serum glucose, insulin, adiponectin, and lipid profiles, and lipid peroxidation of the liver were determined. Homeostasis model assessment for insulin resistance (HOMA-IR) was determined. Chamnamul extract inhibited ${\alpha}$-glucosidase by 26.7%, which was 78.3% the strength of inhibition by acarbose at a concentration of 0.5 mg/mL. Serum glucose, insulin, and cholesterol levels, as well as HOMA-IR values, were significantly lower in the chamnamul group than in the HFHS group. Chamnamul extract significantly decreased the level of thiobarbituric acid reactive substances and increased the activities of superoxide dismutase, catalase, and glutathione peroxidase in the liver compared with the HFHS group. These findings suggest that chamnamul may be useful in prevention of hyperglycemia and reduction of oxidative stress in mice fed a HFHS diet.

A STUDY ON THE DIMENSIONAL CHANGES OF HEAT CURING ACRYLIC RESINS USING HOLOGRAPHIC INTERFEROMETRY (Holographic interferometry를 이용한 열중합 애크릴릭 레진의 변형에 관한 연구)

  • Park, Dong-Kwan;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.1
    • /
    • pp.48-74
    • /
    • 1995
  • Since heat curing acrylic resins undergo unavoidable dimensional changes following polymerization, adaptation can be altered. Until recently, although numerous studies on the dimensional changes of denture base were based on a microscopic technic that measures the relative displacement of a limited reference points on the denture base, but there have been few studies on the distortions of resins using holographic interferometry. Purpose of this study was to determine and compare the dimensional changes and fringe patterns of 4 heat curing acrylic resins, and observe the distortions of acrylic resin denture base by temperature change with the aid of the holographic interferometry. Holographic interferograms were taken on the resin specimens and acrylic resin denture base with the 10mW He-Ne laser and double exposure method. Comparison and analysis of fringe pattern on the recorded object surface was performed. The following results were obtained. 1. The dimensional changes for the high impact resin Lucitone 199 were statistically the greatest of all resins, and the rapid heat curing resin Premium super 20 were the least. 2. The most polymerization shrinkage of all materials occured in initial period of measurements, at this time the difference of polymerization shrinkage properties between resins was founded. 3. The stress distribution of specimens was seen by various type of fringe pattern which had directionality. 4. The polymerization shrinkage of resins was greatly influenced by temperature change. 5. The partial deformations of resin denture base were observed in 70 C and 90 C water.

  • PDF