• Title/Summary/Keyword: Stress Resistance

Search Result 2,295, Processing Time 0.027 seconds

Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement (Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.62-67
    • /
    • 2003
  • Interfacial properties and damage sensing for the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composite were performed using microdroplet test and electrical resistance measurements. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and interfacial shear strength (IFSS) increased due to the improved fracture toughness by energy absorption mechanisms of AT-PEI phase. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 phr AT-PEI content ductile microfailure mode appeared because of improved fracture toughness. After curing, the change in electrical resistance $\Delta\textrm{R}$) with increasing AT-PEI content increased gradually because of thermal shrinkage. Under cyclic stress, in the neat epoxy case the reaching time until same stress was faster and their slope was higher than those of 15 phr AT-PEI. The result obtained from electrical resistance measurements under curing process and reversible stress/strain was correspondence well with matrix toughness properties.

Analysis of Shear Resistance Characteristics in Pile-Soil Interface using Large-Scale Direct Shear Test (대형직접전단시험을 통한 말뚝과 지반 경계면의 전단특성 분석)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.61-69
    • /
    • 2022
  • In this study, a large-scale direct shear test was performed to evaluate the shear characteristics of the pile-soil interface according to the fines content and confining pressure conditions as a reasonable evaluation method of the pullout resistance performance of pile considering the soil conditions. It was found that the shear stress was greatly generated under the conditions of high normal stress and low fines content. In addition, the maximum shear stress was found to be rather large under the conditions of the same normal stress and fines content, when pile surface had high roughness. The internal friction angle decreased at the pile-soil interface, when the fines content in the ground increased. On the other hand, the cohesion decreased under the condition of high fines content. And the internal friction angle and cohesion were large regardless of the fines content in the model ground, when the roughness of the pile surface was high.

Strength Prediction Model for Flat Plate-Column Connections (플랫 플레이트 내부 접합부의 강도산정모델)

  • 최경규;박홍근;안귀용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.897-902
    • /
    • 2002
  • The failure of flat plate connection is successive failure process accompanying with stress redistribution, hence it is necessary to compute the contributions of each resistance components at ultimate state. In the present study, the interactions of resultant forces at each faces of connection, i.e. shear, bending moment and torsional moment are considered in the assessment of strength of slab. As a result the strength prediction model for connection is made up as combination of bending resistance, shear resistance and torsional resistance. The proposed method is verified by the experimental data and numerical data of continuous slabs.

  • PDF

The Influence of Marine Environmental Factor on the Corrosion Fatigue Fracture of SS41 Steel (SS41강의 부식피로파양에 미치는 해양환경인자의 영향)

  • 김원영;임종문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 1991
  • Corrosion fatigue test was performed by the use of plane bending fatigue tester in marine environment having various specific resistance from 25(natural sea water) to 5000.ohm.cm. It is in order to investigate the effects of marine environmental factor on the corrosion fatigue fracture of SS41 steel. The main results obtained are as follows; 1. The aspect ratio(b/a) of corner crack growing in natural sea water is lower than that in air. 2. The surface crack growth rate(da/dN) in marine environment is faster than that in air and da/dN delaies with the specific resistance increased. 3. The experimental constant m of paris rule [da/dN=C(${\delta}$K)$^m$] decrease with the specific resistance decreased and the effect of corrosion in proportion to the specific resistance is more sensitive than that of stress intensity factor range(${\delta}$K) under region II. 4. The accelerative factor(${\alpha}$) in marine environment is about 1.1-2.7 and .alpha. is increase under the low region of stress intensity factor range(${\delta}$K). 5. The electrode potential($E_0$) gets less noble potential with the specific resistance decreased.

  • PDF

Drought Resistance Assessment of Ground Cover Plants for Low Management and Light Weight Green Roof System (저관리·경량형 옥상녹화를 위한 지피식물의 내건성 평가)

  • Zhao, Hong-Xia;Kang, Tai-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.83-97
    • /
    • 2013
  • This study was carried out to suggest an experimental base in selecting the drought resistance of plants. Adopting the natural drought method, this paper studies the drought resistance of 12 kinds of ground cover plants. focusing on analyzing the changes of relative water content on leaf, relative electric conductivity and chlorophyll content in 12 kinds of plants, and and the relation between soil water content under drought stress. The drought resistance of the plants were subject to laboratory and rooftop drought resistance treatments. The Logistic model of nonlinear regression analysis was used to evaluate the lethal time that were predicted with the range of 10.4~30.1d on roof top, and 19.5~39.0d on hothouse. The result shows that with the increase of stress time, relative water content and chlorophyll content on leaf were in a downward trend; the relative electric conductivity was upward tendency. Among 12 species of ground cover plants, exclude Pulsatilla koreana, Ainsliaea acerifolia were selected for rooftop plants because they showed resist drought strongly and took adaptive ability.

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

Relationship between AdeABC Efflux Pump Genes and Carbapenem in Multidrug-resistant Acinetobacter baumannii

  • Ju, Yeongdon;Kim, Yoo-Jeong;Chang, Chulhun L.;Choi, Go-Eun;Hyun, Kyung-Yae
    • Biomedical Science Letters
    • /
    • v.27 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • Multidrug-resistant strain of Acinetobacter baumannii (MDRAB) is an emerging pathogen in health care facilities, preventing MDRAB is a public health concern. We conducted this experiment on a clinical isolate of A. baumannii with two main goals: the role of the efflux pump system in the stress provision of carbapenem and the response to the transcription level of the efflux pump gene. A total of 34 strains of A. baumannii was isolated from the Yangsan Hospital of Pusan National University. First, when we compared and observed the expression of the efflux pump gene and antibacterial resistance to carbapenem, a strong correlation was observed between carbapenem resistance and overexpression of adeB (P=0.0056). Second, a correlation between the efflux pump and concentration gradient and tolerance to carbapenem stress at the AdeABC efflux pump genes transcription level was confirmed. Our results revealed that the expression of the AdeABC efflux pump is an important resistance determinant in obtaining antibiotic resistance of the carbapenem group in A. baumannii.

Correlation Between Mechanical Behavior and Electrical Resistance Change in Carbon Particle Dispersed Plastic Composite

  • Song, D.Y.;Takeda, N.;Kim, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.377-382
    • /
    • 2001
  • Mechanical behavior and electrical resistance change of CPDP (carbon particle dispersed plastic) composite consisting of epoxy resin and conductive carbon particle were investigated under monotonic loading and repeated loading-unloading. The electrical resistance almost linearly increased with increasing strain during loading and the residual electrical resistance was observed even after removing load. The value of the residual electrical resistance was dependent on the maximum strain under the applied stress. This result suggests that the estimation of maximum strain (i.e., damage) is possible by the measuring electrical resistance of composite. The behavior of electrical resistance change during and after loading was discussed on the basis of the results of microscopic deformation and fracture observation. Moreover, the relationship between the volume fraction of carbon particle and the electrical resistivity of CPDP was investigated in relation to the percolation theory. Simulation model of percolation structure was established by Monte Carlo method and the simulation result was compared to the experimental results. The electrical resistance change under applied loading was analyzed quantitatively using the percolation equation and a simple model for the critical volume fraction of carbon particle as a function of the mechanical stress. It was revealed that the prediction was in good agreement with the experimental result except in the region near the failure of material.

  • PDF

'Kowon', a New Korean Ginseng Cultivars with High Yield and Alternaria Blight Resistance

  • Kim, Young Chang;Kim, Jang Uk;Lee, Jung Woo;Hong, Chi Eun;Bang, Kyong Hwan;Kim, Dong Hwi;Hyun, Dong Yun;Choi, Jin Kook;Seong, Bong Jae;An, Young Nam;Jeong, Haet Nim;Jo, Ick Hyun
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.499-509
    • /
    • 2017
  • Recently, there has been increased attention to the development of new plant cultivars with enhanced resistance to biotic and abiotic stress. To develop ginseng cultivars with such traits, systematic breeding programs and comprehensive field studies are prerequisites. In this study, we applied a pure-line selection method to identify a ginseng cultivar with enhanced stress resistance. Phenotypic and agronomic characteristics, seed yield, and physiological responses to biotic and abiotic stresses were investigated according to the guidelines of the International Union for the Protection of New Varieties of Plants (UPOV). In the newly developed 'Kowon' cultivar, the time of emergence, flowering, and berry maturity were intermediate between those of the controls, 'Yunpoong' and 'Chunpoong'. The stem length of 'Kowon' was intermediate, whereas the root length was shorter and the main root diameter was greater than those of 'Chunpoong'. In local adaptability tests conducted in three regions, the yield of 'Kowon' was $666kg{\cdot}10a^{-1}$; 27% and 4% higher than that of 'Chunpoong' and 'Yunpoong'. Diseases such as Alternaria blight, Phytophthora blight, mulberry mealybug, and nematode infestation did not occur in 'Kowon'; and it also exhibited moderate resistance to damping-off and anthracnose. In these cases, yellow spots occurred on aerial parts and the rusty skin of the root, and it exhibited moderate resistance at high temperatures. Our study demonstrates that 'Kowon', which has a high root weight and enhanced biotic/abiotic stress resistance, is a superior cultivar that could increase farmers' income.