• Title/Summary/Keyword: Stress Intensity factors

Search Result 579, Processing Time 0.03 seconds

Stress Intensity Factors of a Sheet with an Eccentrically Inclined Crack Subjected to Pure Bending (편심 경사균열 을 가진 판 이 순수굽힘 을 받는 경우의 응력확대계수)

  • 최선호;조상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.18-23
    • /
    • 1985
  • In the fracture mechanics, the determination of the stress intensity factor value is vital for the prediction of a material fracture behavior. So many data concerning to the S.I.F. have been presented by many investigations to meet endless requrement. In this paper, the stress intensity factors of a sheet with an eccentrically inclined crack subjected to the pure bending moment were investigated theoretically by using of the complex mapping function to determine the Muskelishvili's comlex stress functions. Moreover, the theoretical value was compared with the result obtained from photoelastic esperiment. As a result, it was confirmed that both values coincided with satisfactorily within the margin of 2-3% devition; The results theoretically derived are right.

Analysis of a Crack Approaching Two Circular Holes in an Orthotropic Infinite Plate (직교이방성 무한평판 내부의 두 원공사이에 존재하는 균열의 해석)

  • Cheong, S.K.;Hong, C.S.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1710-1718
    • /
    • 1993
  • This paper investigates the problem of a crack approaching two circular holes in an orthotropic infinite plate. The stress intensity factors were obtained by using the modified mapping-collocation method. The present results show excellent agreement with existing solutions for a crack approaching two circular holes in an isotropic infinite plate. In the numerical examples, various types of cross-ply laminated composites were considered. To investigate the effect of orthotropy and geometry(d/R and a/(d-R)) on crack tip singularity, stress intensity factors were considered as functions of the normalized crack length. It is expected that the modified mapping-collocation method can be applied to the analysis of various kinds of cracks existing around the stress-concentration region of composite laminate.

Deterministic structural and fracture mechanics analyses of reactor pressure vessel for pressurized thermal shock

  • Jhung, M.J.;Park, Y.W.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.103-118
    • /
    • 1999
  • The structural integrity of the reactor pressure vessel under pressurized thermal shock (PTS) is evaluated in this study. For given material properties and transient histories such as temperature and pressure, the stress distribution is found and stress intensity factors are obtained for a wide range of crack sizes. The stress intensity factors are compared with the fracture toughness to check if cracking is expected to occur during the transient. A round robin problem of the PTS during a small break loss of coolant transient has been analyzed as a part of the international comparative assessment study, and the evaluation results are discussed. The maximum allowable nil-ductility transition temperatures are determined for various crack sizes.

Viscoelastic Analysis for Behavior of Edge Cracks at the Bonding Interface of Semiconductor Chip (반도체 칩 접착 계면에 존재하는 모서리 균열 거동에 대한 점탄성 해석)

  • 이상순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.309-315
    • /
    • 2001
  • The Stress intensity factors for edge cracks located at the bonding interface between the elastic semiconductor chip and the viscoelastic adhesive layer have been investigated. Such cracks might be generated due to stress singularity in the vicinity of the free surface. The domain boundary element method(BEM) has been employed to investigate the behavior of interface stresses. The overall stress intensity factor for the case of a small interfacial edge crack has been computed. The magnitude of stress intensity factors decrease with time due to viscoelastic relaxation.

  • PDF

Application of the Photoelastic Experimental Hybrid Method with New Numerical Method to the High Stress Distribution (고응력 분포에 새로운 광탄성실험 하이브릿법 적용)

  • Hawong, Jai-Sug;Tche, Konstantin;Lee, Dong-Hun;Lee, Dong-Ha
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.73-78
    • /
    • 2004
  • In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method.

  • PDF

Analysis of Surface Crack under Tension and Bending Stress in Plate (인장과 굽힘응력을 받는 판재의 표면균열해석)

  • 오환섭;박철희;허민구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.121-128
    • /
    • 1998
  • In this study, when tension and bending stress act on plate simultaneously, stress intensity factor is analyzed at crack tip with using BEM(Boundary Element Method). In this analysis, stress intensity factors(S.I.F) are defined for variable ligament, aspect and stress ratio($\sigma$T/$\sigma$B). Consequently, predicted that crack grow to depth direction at low aspect and ligament ratio in tension stress and to surface direction in bending stress. Tension and bending stress act on plate same time, effect of tension stress in the first stage and effect of bending stress in the after stage was to observed. The outbreak of secondary crack in backside is under the control of stress amplitude and predict that the point of outbreak is mear backside.

  • PDF

A study on the calculation of stress intensity factor for a patched crack using approximate weight function (근사적 가중함수를 이용한 보강된 균열평판의 응력강도계수 계산에 대한 연구)

  • Kim, Jong-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.123-128
    • /
    • 2000
  • A cracked-plate with a patch bonded on one side is treated with a crack-bridging model: assuming continuous distribution of springs acting between crack surfaces. the approximate weight function was introduced to obtain the stress intensity factor of patched crack subjected to residual stress or non-uniform stress. The stress intensity factors for the partially patched crack within finite plate or the patched crack initiated from a notch were successfully obtained by numerical calculation.

  • PDF

Fatigue Life Estimation of Cruciform Welded Joint Considering Interaction, Coalescence and Growth of Multi-crack (다균열 간섭, 합체, 성장이론을 고려한 십자형 필렛용접 이음부의 피로균열진전수명 평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Cheon;Rim, Jeon;Jim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.120-125
    • /
    • 2004
  • Fatigue life of welded joints are governed by the propagation of multiple collinear surface cracks distributed randomly along weld bead. These cracks propagate in mutual interaction and coalescence of them. To estimate the fatigue life, the influences of above two mechanisms on the fatigue life should be taken into account. These two mechanisms appear through the stress intensity factors disturbed mutually. However, it is difficult to calculate the stress intensity factors of multiple surface cracks located in vicinity of weld toe. The stress intensity factors are calculated normally by using the Mk-factors, but such Mk-factors are very rare in literature. In this study, the Mk-factors were obtained from a parametric study on crack length and depth, in which a finite element method is used. A fatigue test for a cruciform welded joint was conducted. The fatigue life of the tested specimen was estimated through present method with the informations obtained from the test, e.g. the number, size and locations of the cracks. The estimated and measured fatigue life showed a good agreement.

  • PDF

A Study on the Effect of Fracture Delay of Intelligent FRP by Transparent Photoelastic Experimental Method (투과형 광탄성 실험법에 의한 지능성 FRP의 파괴지연 효과에 관한 연구)

  • Lee, Hyo-Jae;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1904-1911
    • /
    • 1999
  • The most effective material in the shape memory alloy(SMA) is the TiNi alloy, because its shape recovery characteristics are very excellent. We molded the composite material with shape memory function. The fiber of it is $Ti_{50}-Ni_{50}$ shape memory alloy and matrix of it is epoxy resin(Araldite B41, Hardner HT903. Ciba Geigy), its adhesive and optical sensitivity are very excellent. It was assured that the composite material could be used as model material of photoelastic experiment for intelligent materials or structures. In this research, the composite material with shape memory function is used as model material of photoelastic experiment. Photoelastic experimental hybrid method is developed in this research, it is assured that it is useful on the obtaining stress intensity factor and the separation of stress components from only isochromatic data. The measuring method of stress intensity factor of intelligent material by photoelastic experiment is introduced. In the mode I state, we can know that stress intensity factors are decreased more than 50% of stress intensity factor of room temperature when temperature of fiber is greater than 4$0^{\circ}C$, prestrain greater than 5% and fiber volume ratio greater than 0.42% and that stress intensity factors are decreased by 100% when fiber volume ratio is greater than 0.84%, prestrain greater than 5% and temperature greater than 60 $^{\circ}C$.

Thermal Stress Intensity Factors for Rigid Inclusions of Cusp Crack Shape (커스프균열형 강체함유물의 열응력 세기계수에 관한 연구)

  • 이강용;최흥섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.497-504
    • /
    • 1988
  • The steady state thermal stress intensity factors (TSIF's) are analyzed for hypocycloid, symmetric airfoil and symmetric lip type rigid inclusions embedded in infinite elastic solids, using Boganoff's complex variable approach in plane thermoplasticity. Two thermal conditions are considered, one with an uniform heat flow disturbed by an insulated rigid inclusion of cusp crack shape and the other with an uniform heat flow disturbed by a rigid inclusion of cusp crack shape with fixed boundary temperature. The tendencies of TSIF's for rigid inclusions of cusp crack shape are somewhat different from those of traction free cusp cracks. However, if k=-1, the non-dimensionalized TSIF's for rigid inclusions of cusp crack shape become those of traction free cusp cracks like the tendencies of the SIF's under mechanical loading conditions. The thermal stress and displacement components for a rigid circular inclusion of radius Ro are drived from the results of a hypocycloid crack type rigid inclusion.